Mathematical Notation and Some Terminology

- The operator L from space W to space $E: L: W \rightarrow E$.
- The kernel of a linear operator $L: W \rightarrow E$ is a subspace $\operatorname{ker} L \subset W$ that transforms by L into 0 : $\operatorname{ker} L=\{x \in W \mid L x=0\}$.
- The image of a linear operator $L: W \rightarrow E$ is a subspace $\operatorname{im} L=L(W) \subset$ E.
- Projector is a linear operator $P: E \rightarrow E$ with the property $P^{2}=P$. Projector P is orthogonal one, if $\operatorname{ker} P \perp \operatorname{im} P$ (the kernel of P is orthogonal to the image of P).
- If $F: U \rightarrow V$ is a map of domains in normed spaces $(U \subset W, V \subset E)$ then the differential of F at a point x is a linear operator $D_{x} F: W \rightarrow E$ with the property: $\left\|F(x+\delta x)-F(x)-\left(D_{x} F\right)(\delta x)\right\|=o(\|\delta x\|)$. This operator (if it exists) is the best linear approximation of the map $F(x+\delta x)-F(x)$.
- The differential of the function $f(x)$ is the linear functional $D_{x} f$. The gradient of the function $f(x)$ can be defined, if there is a given scalar product $\langle\mid\rangle$, and if there exists a Riesz representation for functional $D_{x} f$: $\left(D_{x} f\right)(a)=\left\langle\operatorname{grad}_{x} f \mid a\right\rangle$. The gradient $\operatorname{grad}_{x} f$ is a vector.
- The second differential of a map $F: U \rightarrow V$ is a bilinear operator $D_{x}^{2} F$: $W \times W \rightarrow E$ which can be defined by Taylor formula: $F(x+\delta x)=$ $F(x)+\left(D_{x} F\right)(\delta x)+\frac{1}{2}\left(D_{x}^{2} F\right)(\delta x, \delta x)+o\left(\|\delta x\|^{2}\right)$.
- The differentiable map of domains in normed spaces $F: U \rightarrow V$ is an immersion, if for any $x \in U$ the operator $D_{x} F$ is injective: ker $D_{x} F=\{0\}$. In this case the image of F (i.e. $F(U)$) is called the immersed manifold, and the image of $D_{x} F$ is called the tangent space to the immersed manifold $F(U)$. We use the notation T_{x} for this tangent space: $\operatorname{im} D_{x} F=T_{x}$.
- The subset U of the vector space E is convex, if for every two points $x_{1}, x_{2} \in U$ it contains the segment between x_{1} and $x_{2}: \lambda x_{1}+(1-\lambda) x_{2} \in U$ for every $\lambda \in[0,1]$.
- The function f, defined on the convex set $U \subset E$, is convex, if its epigraph, i.e. the set of pairs Epif $=\{(x, g) \mid x \in U, g \geq f(x)\}$, is the convex set in $E \times R$. The twice differentiable function f is convex if and only if the quadratic form $\left(D_{x}^{2} f\right)(\delta x, \delta x)$ is nonnegative.
- The convex function f is called strictly convex if in the domain of definition there is no line segment on which it is constant and finite $(f(x)=$ const \neq $\infty)$. The sufficient condition for the twice differentiable function f to be
strictly convex is that the quadratic form $\left(D_{x}^{2} f\right)(\delta x, \delta x)$ is positive defined (i.e. it is positive for all $\delta x \neq 0$).
- We use summation convention for vectors and tensors, $c_{i} g_{i}=\sum_{i} c_{i} g_{i}$, when it cannot cause a confusion, in more complicated cases we use the $\operatorname{sign} \sum$.

