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ABSTRACT

A new approach to the problem of reduced description for
Boltzmann-type systems is developed. It dinvolves a
direct solution of two main problems: thermodynamicity
and dynamic 1invariance of reduced description. A
universal construction is introduced, which gives a
thermodynamic parameterization of an almost arbitrary

approximation. Newton-type procedures of successive
approximations are developed which correct dynamic
noninvariance. The method 1is applied to obtain

corrections to the local Maxwell manifold using
parametrics expansions 1instead of Taylor series into
powers of Knudsen number. in particular, the high
frequency acoustic spectra is obtained.

1. INTRODUCTION

In this paper we introduce a new method of
successive approximations for solving the problem of
reduced description for  Boltzmann-type kinetic
equations. The method is concordant with the #-theorem
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at each iteration. It is based on rapidly converging
procedures of the Newton type. The method is free of any
essential restrictions upon the choice of the initial
approximation. In its basis it does not reqﬁire any
small parameters.

The method to be developed will be applicable to
any dissipative system with a global convex Lyapunov
function (e.g. the Boltzmann equation provided with
suitable boundary conditiomns, chemical kinetic equations
for closed systems, the Fokker-Planck equation, etic).

In this section we give a short survey of some
difficulties of <classical methods of the Boltzmann
equation theory.

The main difficulty of the Chapman-Enskog method
111 are "nonphysical" properties of high-order
approximations. This was stated by a number of authors
and was discussed in detail in [2]. In particular, as it
was noted in [3], the Burnett approximation results in a
short-wave instability of the acoustic spectra. This
fact contradicts the #-theorem (cf. in [3]). '

The Hilbert expansion contains secular terms {2].
The latter contradicts the #-theorem. However, we are
not sure this question was discussed in detail.

The other difficulties of both of these methods
are: the restriction wupon the choice- of imnitial
approximation (the local equilibrium approximation), the
demand for a small parameter, and the usage of slowly
converging Taylor expansions. These difficulties never
allow a direct transfer of these methods on essentially
nonequilibrium situations.

The main difficulty of the Grad method [4] is the
uncontrollability of the <chosen approximation. An
extension of the list of moments can result in a certain
success, but it can also give nothing. Difficulties of
moment expansions 1n the problems of shock waves and
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-sound propagatlon can be seen in [2].

Many attempts were made to make these methods more -

"perfect Fo the Chapman- Enskog and Hllbertl methods.

these attempts are based in general on some "good "
rearrangement of expansions (e.g neglecting high+order
derivatives {2]; reexpanding {2], pade approximations
and partial summing [5-7], etc. ). This type of work with
formal series is wide spread in physics. Sometimes the
results are surprisingly good - from the renormalization
theory in quantum fields to the Percus-Yevick equation
and the ring-operator in statistical mechanics. However,
one should realize that a success 1is mnot at all
guaranteed. Moreover, rearrangements mnever remove the
restriction upon the choice of the 1initial local
equilibrium approximation.

Attempts to improve the Grad method are based on
guasi-equilibrium approximations [8,9]. It was found in
[10] that Grad distributions are linearized versions of
appropriate quasi-equilibrium approximations. A method
which +treats fluxes (e.g. moments with respect to
collision integrals) as independent wvariables in a
quasi-equilibrium description was introduced in
[7, 11, 12].

An important feature of quasi-equilibrium approxi-
mations is that they are always thermodynamic, 1i.e. they
are concordant with the #-theorem due to their
construction. This question was discussed in detail in
[13, 14]. However, quasi-equilibrium approximations do
not remove the uncontrollability of the Grad method.

Quasi-equilibrium approximations were <criticized 1in

'[15]. This criticism holds also for the Grad method.

Finishing this short survey of classical methods,
we pay attention to the fact that there exist some
approximations which are assumed ad hoc, and which are
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not inserted into amy successive procedure. The most
famous of these approximations is the Tamm-Mott-Smith
approximation in the shock wave prdblem [2].

1t is convenient to formulate the problem of
reduced description in a uniform way (a more precise
formulation will be given 1in Section 2.1). Let an
approximated reduced description is chosen. This means
that a manifold (a "surfacev) is fixed in the space of
distributions. Here we arrive at two general problems:
1. Thermodynamicity. We must define macroscopic dynamics
on the manifold. In order to do this, we must project
the Boltzmann equation onto some macroscopic parameters.
The first problem is: how and onto which macroscopic
parameters should one perform this projection? Which

projector would make physical sense and will preserve
the thermodynamicity (the concordance with the
H-theorem) at the chosen macroscopic level?

2. Dynamic_invariance. We understand that the chosen

manifold is not a dymamic invariant manifold of the
Boltzmann equation. The notion “"dynamic invariant
manifold" appears 1in most of dynamic theories: a
manifold is called dynamic invariant if the vector field
of the dynamic system is tangent to this manifold in
every point. Hence, we are willing to improve the chosen
manifold in order to make it “"more invariant". The
second problem is: how to obtain these corrections in a
general case (e.g. when there are no small parameters or
other simplifications)? We hope that the solution of the
second problem would be a method of successive
approximations which would not require a too strong
restriction upon the choice of the initial manifold.

The general problem of classical methods is that
none of them gives a successive removal of dynamic
noninvariance of reduced description with preservation
of its thermodynamicity. The Grad method and its
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generalizations7ﬁ give thermodynamic 7apprbkimations;;'

‘ﬁoWever if  one takes the‘"Grad distribution as an

1n1tlal condltlon for the Boltzmann equation at. the tlmcg_
t=0, then for t>0 the tragectory of the kinetic equation
"takes off" from the initial manifold. One can neither
obtain the corrections caused by this "take off", nor
even evaluate them. on the other hand, the
Chapman—-Enskog and the Hilbert methods do not guarantee
thermodynamicity. The guestion about the correction of
noninvariance is also unclear for them.

In classical mechanics the problem of invariant
manifolds was developed essentially by the famous
Kolmogorov-Arnold-Moser theory (KAM) [16-18]. Two points
of KAM methods are of prime importance: i) to construct
directly an invariant manifold rather than a solution,
and, 1ii) to use rapidly converging Newton method instead
- of Taylor expansions for this constructing.

we understand the problem of reduction for the
Boltzmann equation as a problem of constructing a
dynamic invariant manifold from a given initial
manifold.

However, a direct application of the KaAM methods
faces many problems. The most essential of these
problems is that at every iteration we should obtain
approximations which are concordant with the H-theorem
(the problem of thermodynamicity). If not, then the
practical sense of these approximations is unclear.

In this paper we show how to solve this and some
other problems and how to reduce the problem of
reduction to solving 1linear problems. These linear
problems are of one type in their essence.

In Section 2 we introduce a general method for
constructing dynamic invariant manifolds for dissipative
systems with a global convex Lyapunov function. In
Section 3 we develop this method for the Boltzmann
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equation. Section 3 serves for an intermediate between
the general theory of Section 2 and Section 4 where we
appiy it to the problem of derivation of hydrodynamics
from the Boltzmann equation. In Section 4 we apply the

technique of pseudodifferential and Fourier integral
operators to solve the equation of the first Newton-type
iteration. In particular. we consider a simple
application of the method to the problem of acoustic
spectra. As it was mentioned above, the short-wave
instability is a typical problem of the Chapman-Enskog
expansion. Usual methods of removing this phenomenon
always require some ad hoc assumptions on the character
of the improvement. All these methods are of a recipe
character. A more general basis is required for making
the regularization free of arbitrary assumptions. The
method of invariant manifolds yields the improvement
without any a priori assumption. Results are compared
with the Burnett approximation and with a method of

partial summing [5-7].

2. THE CONSTRUCTING OF DYNAMIC INVARIANT MANIFOLDS
FOR DISSIPATIVE SYSTEMS

In this section we introduce a formal general
scheme for constructing dynamic invariant manifolds for
an absiract dissipative system. Basic notions we use are
not rigorous 1in mathematical sense but they are
sufficiently clear to understand the procedure, and to
deal with its pafticular and more rigorous realizations.

2.1 Dynamic Invariance and Thermodynamicity

we denote as F a convex domain in a linear space £,

and consider an equation in F:

df /dt=J(F) (2. 1)
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ujHere_ﬁEF L is'the time"and'I(f) is the vector field (a
- smooth mapplng F—E: fWéf(f)) 'Further “we call F the
- phase space of system (2. 1). Wc assume that the domain F

.fls positively 1nvar13ﬂt with respect to equatlon (2. 1):

if ft is a solptlon of eq. (2.1) and fOEF, thgn ftEF for
all £20.

Equation (2.1) will be <called the dissipative
system, 1f a strictly convex functional F(f) 1is defined
in F, for which the following inequality is valid:

AH(L)/dE= DeH(F)-T(F) <0 (2. 2)

Here DfH{f) is the linear functional (the differential
of the functional #(f) in the point ).

Denote as 4 a domain 1in a linear space B, and
consider a smooth immersion A—F. a—f(a), where a4,
and f(a)sfF. The set of points f(a), where a runs the
domain 4, will be called the manifold with internal
coordinates a (or the mamifold for short). The manifold
will be denoted as {f(ag)} if we want to stress the
coordinate dependence, or as M if we are not interested
in this dependence. The elements of the manifold will be
denoted either as f(a) or as fm’

Thus, we can say that the immersion a+>f(a) equips
the manifold M with the coordinate system. The
coordinates a identify the points on the manifold.

For a given manifold ®, we denote as Tr the linear

tangent space to M at the point f <M We always can

identify T with some linear subspace of the space E.
m
Further, we will make no distinction between these two

objects. The tfangent space Tf(a) 1s constructively
defined as the image of the linear operator Daf(a), the
latter 1is the differential of the immersion 4—F at
the point f(a). For the finite-dimensional case (1. e.
when 4 is the domain in the finite-dimensional space B),
the tangent space Tf(a) is defined as the linear
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envelope of partial differentials Da’f(al,...,a y, where

1

| 1
i=1,...,n, and p=dimB.

Let the manifold M is given. The problem which
always arises in applications is: how to determime the
dynamics induced with the vector field J7(f) on the
manifold M? In the Boltzmann equation (BE) theory, this
problem appears when one deals with a manifold of
distributions, and which approximates a solution of BE.

For example, the Tamm-Mott-Smith (TMS)
approximation gives us the manifold {f(a_,a+)} which

consists of distributions

f(a_,a )= alf + a+f+ (2.3)

+
Here a_ and a_ (the coordinates on the wmanifold

tleTMS

position vector x, and f_ and f_are fixed Maxwellians.

The problem of induced dynamics for mTMS is as follows:

considering & and a_ as values of the functions a_(},t)

={f(a_,a+)}) are non-negative real functions of the

and a+(},t), to obtain dynamic equations for these
functions induced with BE.

Next example 1is the manifold {f(ﬂ,z,T)} which
consists of local Maxwellians (LM):

27k Ty =3 /2 n(v-u)°*
s } CXD{“ 2k T }

f(n,E,T}=ﬂ{ (2. 4)

The coordinates n, 3, and 7 are functions of ¥. The
problem of induced dynamics for the LM manifold m ., is

the same as for ® considering =, 3, and 7 as the

values of the fun;??ins n(},t), 3(},t), and T(},t), to
obtain dynamic equations for these functions from BE.
Remark. when speaking about manifolds for BE, we
usually deal with distributions which are labeled with a
finite number of parameters for every spatial posiftion
vector x. Distributions (2.3) and (2.4) illustrate this

situation. Further, when speaking about such
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Iocally finite-dimensional manifolds, we will omit the -

term "ldcal"ﬁfSee remark‘(i);in Section 3).
The problem of induced dymamics is to construct

vectors in thc tangent spacés Tf induced with vectors
’ m i

J(fm) for every fmem._More precisely, for evefy fmem, we

have to introduce a projector P, : E—7T which projects
Lo Iy

the vector J(f,) into the tangent space Tp
"

P (J(f Y)Y €T ' (2. 5)
fﬂl " f’m

The result of these projections for all £ el will give
us a vector field of induced dynamics, and thus it will
define the time evolution induced inside the manifold M.
we may expect that the projectors me might be different

for different points fmém. Because of the immersion
A—F, we can identify the induced vector field in the
tangent spaces with a certain vector field in the space
B, and thus we <can obtain the equation for the
coordinates a.

1t should be stressed that the problem of induced
dynamics itself is not a mathematical problem: one can
choose any projector (2.5). Even monsters, such as
me(J(fm)):O for all fmem, do not contradict the

mathematical viewpoint while they are absolutely
senseless for solving a physical problem. On the other

hand, the ambiguousness of the choice of P makes us to
T

search for additional reguirements upon the induced
dynamics.

The only case, when no problems arise with the
induced dynamics,occurs when the vectors J(fm) belong to
the tangent spaces Tfm for all £ <® The manifold M with

this property will be called the dymamic invariant

manifold Qf equation (2. 1):

J(fﬁ)erf for all fﬁem (2. 6)
m
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However, in the wmajority of cases, one deals with
manifolds which lack the property of dynamic invariance
(2.6). In applications, one usually solves the problem

of induced dynamics by introducing the projectors Pe
il

based on a tradition and (or) physical motivation. For
example, in the case of LM manifold, one usually defines

the projector P as:
f(n, u T)
P 5 (JYy=f(n, u )
f(m u, T)
> 2
o i \ 1 m(v-u) 3 -
+ (V —U_ N (T)+ [ - —] ( )};
(2k I]T)lfz =1 r 171 ﬂl/Z szT 2] 4
1 /4
A (T)= T1e7d3v; A(1)= Fev -u, ywrd3v, =1, 2,3
0 Hl/Z 1" (ZKBHT)I/z
1 m(v-0)°
A (T)= f[ - é}fd3v (2. 7)
4 171/2 szT 2

For the TMS manifold, different types of projectors

Pf(a a y Yere considered in {2, 19, 20}, and the choice
—? +

of projector is the subject of an old discussion [2].
The example of LM manifold is remarkable: one can
interpret the <coordinates as the wvalues of linear

operators

Mo(f)=f1-fd3v; M (f)~—fv Jd’ v, M (f) 3k f(v U) 25d3v.

The latter are defined in é neighborhood of L and

projector P is generated with the differentials

f(ﬂLZ,T)
of these operators. The wvalues of operators Mk(f),
k=0,...,4, are naturally interpreted as macroscopic

parameters (1i.e. the density, the flow velocity, and
the temperature). This example brings us to a general

way of constructing the projector Pe .
m
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"For a.given manifold M, we define the projector Pr
o . = Smo

in twofS{eps; | |
"step 1. We introduce a parameterization with
macroscopic paramelers ¥ for the manifold R Denote as

v, a neighborhood of the manifold W in F: W<l cF. Let

M(*) be a smooth mapping MU —M, where # is a linear
space. We assume that ¥(*+) has two properties:

(1) (U, )=H (M) (2. 8a)

i. e. the image of the neighborhood U coincides with the
image of the manifold M, and
(ii) The restriction of M#(+) to B ¥ m has a smooth

reverse mapping #(M)—M which maps M(f) into f(#)sh
M= (MH)=m (2. 8b)

The mapping M(*) with these two properties will be
called the macroscopic mapping.

In order to stress the parameterization of the
manifold M with macroscopic parameters M, we write it as
{f(My}. Note that, due to the properties (i) and (ii),
the mapping M(*') gives a (nonlinear) projection of the
neighborhood U into M according to the rule:

U, = (M) — W
‘ (2. 9)
FF> M(F) => F(M)
Step 2. Given a manifold {f(#)}, we define the

projector P as

(M)

P (JYy=D F(M)° M(f)‘ o J (2.10)
(¥ M r FeF (M)

Here DMf(M) is the differential of the immersion M(M)—F

in the point f(#), and DfM(f) is the differential
=f(M)

of the mapping #(f) in the point £ (#). Obviously,

P}(M)(J)zpf(M)(J) because F(M(FY)=f if =l
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Projector (2.10) gives us the vector field of
induced dynamics: _ _
Pf(M)(f(f(M)) ‘ (2. 11)

operator Pf(M) projects the vector J(f(#)) into the
tangent space rf(M), the latter being the image of the
operator DMf(M). Definition (2. 11) vields the equation
of induced dynamics in terms of macroscopic parameters #

%% =-DfM(f) “J(F(M)) (2.12)

F=Ff(#)

- If we have fixed a manifold {f(a)} using some
immersion 4—F, then the introduction of parameteriza-
tion with macroscopic parameters # assumes the smooth
isomorphism M({f(a)}+«—A established with the relation
a->M(f(a))=M(a). In this case we say that M(f) equips
the manifold {f(a)} with a new coordinate system M(a),
and we write it as {f(M(a))}. Then formula (2.12) 1s
rewritten as folloW&

Qgﬁél = DH(L) T(FM(aY)) (2. 122)
f=f(M(ay)

The latter equation can be considered as the induced

equation for the coordinates 2 on the manifold {f(a)},

created with macroscopic mapping #(f). Due to the smooth

isomorphism a-»M(a) assumed, we can rewrite it as:

[Dgaa ]°%§'= DeM (L)}, *J(f(M(a))) (2. 12b)
f=r(M(ay)

Here [Q%éél] is the derivative of +the isomorphism

a->#(a).

The notion r"macroscopic parameters” used reflects
the situation with BE: the values of operator #(f) can
be interpreted as observable physical guantities. It 1is
necessary to distinguish the parameterization of M with

macroscopic parameters from that with the coordinates a.
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In the latter case we do not undertake a consideration
of the neighborhood Um. For example, natural coordinates
of the LM manifold are macroscopic parameters, while the
coordinates a_ and a, of the TMS manifold are not (i.e.
they are not defined as the values of some macroscopic
mapping with properties (2. 8a) and (2. 8b)).

~ Further we consider only the approach to obtain the
induced dynamics via macroscopic parameterization. It
should be stressed here that this approach does not yet
solves the problem of ambiguousness in the choice of

projector Pr ¥e  have only reformulated = this
T
ambiguousness by replacing it into the choice of the

macroscopic mapping M(f). Hence, we have to search for
additional restrictions upon the choice of #(f) for a
given manifold M

Up to now, all considerations were appropriate to
any equation (2.1), regardless of whether it 1is the
dissipative system or not. The main feature of
dissipative systems is the inequality (2.2) (this is the
H~-theorem for BE).

Hence, it is natural to introduce the principle of
conservation of the type of dynamics in the induced
dynamics. For dissipative systems, this principle states
that the vector field of induced dynamics should
preserve the inequality (2. 2).

For a given manifold M and for 1its macroscopic
parameterization {f(#)}, we denote as H(#) the function
H(f(¥)y), and we assume that #(#) 1is smooth for all
MsM(®). Parameterization {f(M)} of the manifold Mm will
be called thermodynamic (for short, manifold {f(#)} will
be called thermodynamic as well), if the following

inequality is valid for all MeM(m):

dng =Dy H (M) D ML) rr J(F (MK (2.13)
=I (M)
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Here D, H(M) is the differential of the functional H(#).

- In other words, the principle of conservation of
the type of dynamics for dissipative systems is
expresséd with inequality (2.13) as a request upon the
choice of macroscopic mapping #(f) in the neighborhood
of the given manifold M. We stress here that the request
on thermodynamicity is directed to the mapping M(')
(i.e. to the choice of induced dynamics) rather than to
the manifold M itself. of coufse, not any manifold M is
suitable for creating the thermodynamic parameteriza-
tion, but the restriction upon the choice of suitable M
is incomparably weaker than that of the thermodynamic
parameterization (see next section). Obviously, not
every choice of ¥M(f) for given M satisfies inequality
(2.13), and thus the request on thermodynamicity of
parameterization is not trivial. Thermodynamicity of
parameterization will be stressed with the asterisks
{f*(M)} for the manifold, and M*(-) for macroscopic
mapping. Dynamic invariant manifold of dissipative
system is obviously thermodynamic for any choice of ¥ (1)
in its meighborhood.

The request on conservation of the type of dynamics
1s very important. For exanmple, if we comnsider
Hamiltonian systems instead of dissipative ones, then
this request means that the induced vector field should
have the Hamiltomian structure.

we consider the reqﬁest on thermodynamicity as the

prime restriction upon the choice of projectors Pf .
m

Other (additional) restrictions depend on the particular
type of the dissipative system under consideration. For
BE, tihese additional restrictions may respond, for
example, to usual conservation laws (1. e. to
conservation of the number of particles, of momentum,

and of energy).
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- A specific family of approximations for dissipative
systemé consists of quasi—cquilibrium manifolds. Lét U
be an bben convex domain in F.-Consider a smooth mapﬁing
M(*): U—M, where ¥ is a linear space. We assume tha£
1) For every MeM(U), there exists an unique solution

f*(M)EU of the variational problem:

H(f)— min for M(f)H)=M (2.14)

2) There exists a smooth reverse mapping MF+f*(M) for

every M<M(U), and this 1is a smooth immersion M(U)—F.
The manifold {f*(M)}, which consists of solutions of the
variational problem (2. 14), is called the quasi-
equilibrium manifold. It is easy to see that the mapping
('), for which assumptions 1) and 2) are valid, holds
at a time the properties (2.8a) and (2. 8b). vVector field
of induced dynamics for quasi-equilibrium manifold

(£ (#)} is determined with projector P , (2. 10).
- ()
Quasi-equilibrium manifolds are thermodynamic due to
their construction (see elsewhere, for example
[8,9, 13, 14]). However, usually in applications,

quasi-equilibrium manifolds are not dynamic invariant.
The general problem 1is to construct a dynamic
invariant manifold, starting with a given initial
dynamic noninvariant manifold. For dissipative systems
this problem consists of two main parts:
Problem 1. For a given manifold M, one has to determine
the thermodynamic parameterization {f*(M)}.
Problem 2. For a given manifold {f*(M)}, one has to
obtain a correction which decreases its deviation from a
dynamic invariant manifold (i e. to make the initial
manifold "more invariant").
These two problems are interconnected. oOn the one
hand, the search for thermodynamic parameterization

gives us the projector P , and thus defines the
£ ()
defect caused with noninvariance. On the other hand, a
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correction of dynamic noninvariance gives US & Dnew,
manifold, and we have to determine the induced dynamics

for this new manifold.
It is convenient to rewrite the condition (2. 6) in

other form,utlélzlng the projector Pf(M):

Acfmyy = Pf(M)(I(f(M))_J(f(M)):.O (2. 15a)
or, 1in detail notation:
Acf(uyy = Dyt (M) DM (L) T (F(MY)Y-T(£(M))=0 (2. 15b)
I=f(#) '

According to Problem 2, we consider expression (2. 15a)
as the npnonlinear equation (the invariance equation)
which we have to solve starting with a given initial
manifold mo. Thus, we have to develop a method of
successive approximations to solve equation (2. 15a).
According to Problem 1, we have to create thermodynamic
parameterization for each of these approximations,
including the initial approximation mo.

Thus, the problem of reduced description for
dissipative systems consists of Problems 1 and 2.

In next section we solve Problem 1 (the problem of
thermodynamic parameterization) for an almost arbitrary
manifold M, for dissipative systems of the general type.
In section 2.3 we develop Newton-type methods to solve
equation (2. 15a), and this methods will be combined with
the method of thermodynémic parameterization.

2. 2 Thermodynamic Parameterization

In this section we introduce a universal
construction which gives the thermodynamic parameteriza-
tion {f*(M)} for the manifold M This construction is
based on a specific choice of the thermodynamic
macroscopic mapping M*(f) in the neighborhood U SF. The
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mostly important features of our comstruction are:-

| 1)‘This construction depends'onlyfon H(f) but nbt on

J(f) (i.e. it is wniversal for all dissipative systems
(2. 1) with given #(f)), “ f

2) This construction is the only universal one (1. €.
this is the uniqﬁe construction with property 1).

In order to fulfill this program, we {firstly
introduce a method of constructing the macroscopic
mapping M(f) with the properties (2.8a) and (2.8b).
Macroscopic mapping #M(f) will be constructed 1in two
steps:

Step 1. For every fEUm, using linear in f equations, we
search for the point fmem which satisfies the condition

M(LY=H(L)

step 2. For every f W, we define parameters #(f ) so

that smooth reverse mapping #(#)—M should exist, and it

should be a smooth immersion M(M)—F.

In other words, in Step 1, we define a projection
of the neighborhood ¢ onto the manifold ® (see also
(2.9)). In Step 2 we create a coordinate system on the
manifold M and, in accordance with Step 1, this will be
the parameterization with macroscopic parameters,

In Step 1, for every f em, we define limear
transforms Mfm(f) which depend smoothly on izw and we

take:
M(f):M(fm), if My (F~F)=0 (2.16)
m

Here féUm. In other words, we give the value M(fm) to
fGUm if f-fﬁ belongs to the kermel of Mfm(f):
M(FY=M(F.

Tt

y, 1if f‘fﬁgkeerm (2. 16a)

The sufficient condition for the univalent
solvability of 1linear equations Mf (f—fm)=0 in U, (we
m .

can choose a sufficiently small Uy) is t he
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- transversality conditiom
‘kerM- + T, = E, kerd, OT = {0}
fm fm fm f’ﬂl
The essence of the method proposed for constructing

macroscopic mapping #(f) is a description of keer in
’ m

(2.16). Step 1 has the principal meaning because for a
given M one can introduce many different transforms

m
was chosen. Usually in applications, in Step 2, we are

.able to identify L (fy with M(f) (i.e. we can create
m

Mf (). Step 2 is usually straightforward after M ()
m

the coordinate system on M using the values H e (fm)). In
41
this case we can take:

ML

118

=My (£ ), M()=M, (F) (2.17)
fm " Zrm Mf‘ (f—fm):o
m

For example, in the case of LM manifold, we take M ()
m

as the direct sum of five linear mappings:

M R (f)={ fl'fd3v; fvifd3v, i=1, 2, 3; fvzfd3v}
f(nu T)
These do not depend on f(n,ﬁ,T)GmLM, and the kernels
kerM 5 are the same for all f(ﬂ,z,T)émLM.
f(mu T) '
Physically, condition ¥ S (f—f(ﬂ,E,T))=0 gives
f(n u T)

those distributions £ which have the density, the flow
velocity, and the +temperature equal to corresponding
parameters n, 3, and 7 of the local Maxwellian f(ﬂ,z,T).

For the given manifold M, +the derivation of the
thermodynamic macroscopic mapping M$(f) in accordance
with the procedure proposed requires a specific choice
of linear transforms M;m(f) in U, We will now introduce

a condition under which the transforms Hp (fy will be
™

thermodynamic. Next we will discuss the sufficiency and

the necessity of this condition.
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Denote asfuf the dual variable:
| M0 o (L) | L (2.18)
Here D,#(f) is the linear functional: the differential
of the functional #(f) in the point 7. Due to the strict
convexity of #(f), there exists a one-into-one relation
Macroscopic mapping #(f) will be thermodynamic 1if,

for all fmem, the egualities

M(£)y=M(f)
imply

f—fmekerufm (1. e. Hfm'(f—fm)=0),

where

ufm=DfH(f)

™m

Thus, the condition of thermodynamicity is:

M({Y=HM(F

w) f—fme kerufm (2.19)

Here fEUm. In other words, the linear transform Hp ()
m

in (2. 16) will be thermodynamic, if

ker#M . (FHrckerld (2.20)
"~ Ly

Equations Mf '(f—fm)=0 are solvable with respect to
m :

fm, for every £ from some neighborhood of M, only if the

manifold ® is not tangent to the level of the functional

H(f) in any point f . This transversality condition is

the only principal constraint on the choice of N
Further, we assume this transversality condition is

satisfied.

Condition (2.19) (or (2.20)) 1nitializes the
construction of Me (£Y in (2.16) for the a priori given
m

manifold ® The standard description of keruf is given
m
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by functionals M; (-
“m

Mp (F) = Pp f (2.21)

T ji}

Here f<U, . Linear +transform e (f) will give thermo-
. n
dynamicity if keer (f)CkerM; (). obviously, if we take
m m

ker#, (f)zkerM; (f)ﬁkerM} (£, where M} (fy 1s an
m - m ™ m

arbitrary linear mapping, then implication (2.19)
remains valid for Ly (fy. This makes possible to
hi !

complete Step 2, and to construct +the thermodynamic
Macroscopic mapping M*(f) in the manner of (2.17).
Usually in applications, the following strategy of

constructing of thermodynamic keer (f) is convenient:
n

one takes kerM;m(f) and intersects it with a sufficient
number of kerZ, where kerZ are kernels of some linear
mappings L(f), so that (2.17) gives a coordinate systen
on M. Linearity plays no key role.

we will now consider the sufficiency and the
necessity of condition (2. 19).

Condition (2. 19) is sufficient for thermodynamicity
of M*(f) because of the following duality principle:

f, is the unique solution of the variational problem:

#(f)—min for f= Umﬁ(kerufm+fm) (2.23)

This is so because:

1)y H#(f) is the strictly convex functional, and

1i) Kp =Umh(keruf +fm), is the convex neighborhood of fm
m m

) (1f necessary, one can always take for U

in (kerufm+fm

a smaller neighborhood of Mm).
In other words, fﬁ gives the only minima of #(f) in

the convex domain Kf which belongs to the hyperplane
T
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I

m

T ={fe£'y*.(f~f )=0} o (2. 24)
fIIt _fm w

Taking into account (2.19) and (2.23), we see that

fm is also the unigue solution of +the wvariational

problem:
H()y—min for M*(f}:M*(fm) (2.25)

Here f<U,. This 1s so because, due to (2.20), K is
m

wider than Umﬁ(keerm+fm), and according to (2.23) £

gives the only minima to #({) in Kyp
m

Finally, as we have defined £, as the solution of
variational problem (2.25), +the thermodynamicity of
M*(f) can be proved straightforwardly in the same manner
as for quasi-equilibrium manifolds {f*(M)} (2. 14) (see
elsewhere, for example [8, 9, 13, 14]). _

An important particular case 1s that when the
manifold ® 1is a quasi-equilibrium manifold {f*(M)}
(2. 14). Then no npew macroscopic mapping 1s reqguired.
Quasi-equilibrium manifold {f*(M)} is thermodynamic due
to its construction because

keerM(f) | . <kerjp
=F () £ (M)
pue to the duality principle (2. 23), one can consider an
arbitrary manifold M as if it was a quasi-eguilibrium
manifold after the appropriate parameterization.

It is remarkable that condition (2. 19) accounts
only the Lyapunov functional # but not the vector field
of dissipative systems. Now we will demonstrate the
necessity of this condition. In order to do this, we
have to turn to a consideration of a whole family of
dissipative systems with a given functional #.

Denote as 33 the family of vector fields J(*) which
define dissipative systems (2. 1) with the given Lyapunov
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functional #. Due to inequality (2.2), vector J€£ can
represent a vector J(f) for some J(')GSH if it belongs

to the allowed half-space E}h:

th ,
Ef = Jegl Mp JSG}

The interior of E}h will be called the sérictly allowed
half-space EE:

5}: JEEI Mf-1<o}

condition /=0, defimes a partition of E into two
half-spaces, EEE}hUE}, where E; is the sirictly

forbidden half-space:

E}:{JEEI Mf'f>0}
None of vectors from E} can represent a vector J(f) for
any J(')<3,. '

Dealing with the whole family SH, it is convenient
to reformulate the request on thermodynamicity of
induced dynamics. Same as for the space £, we define the
allowed, the strictly allowed, and the strictly

forbidden half-subspaces of Tf :
i1

th l th
T/ =3J=T Mo TS0 p=E, N7
f fm fm fm f

T m

o ‘I<Q}zEf T ¢

Tf = JETf
m m n

TH T

+

TF ={7<T I 1 'J>O}=E+ o7
fn’l fm fm. f!ﬂ fm

Projector Pe will be called wniformly thermodynamic if
™

th th
Pp (E; ST (2.26)
fII 1 f’ﬂt fm
Note that, due to the transversality condition

formulated above, the latter inclusion is an eguality:
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-~ -th _ th
© Py (Ef =T
f‘m :‘-"‘[.Irl fm
and that two similar equalities also take.blace:
o+ *
Ppr (Ep )=T
f}n " f}n
In other words, the uniformly thermodynamic projectors
transform all rphysically allowed microscopic vectors"
th

E}h into r"physically allowed macroscopic vector§'Tf,
m

m
and thus they give thermodynamic induced dynamics for

all representatives of the family SH.

consider the family SH and a manifold M Condition
(2. 19) 1s mnecessary for thermodynamic parameterization
in the following sense: this is the unique condition in
Step 1 which defines the thermodynamic parameterization
of ® for all dissipative vector fields SH. In other
words, projector defined by condition (2.19) is the only
uniformly thermodynamic projector.

In fact, 1let wus consider a parameterization of M
defined with some macroscopic mapping AN(°), different
from M*(-) defined via condition (2.19). It means that

kervf ¢kerpfm

m

for some fﬁem.

Here me=DfN(f) r=f Then there exists JOGE;m, for

which Joékervfm, and Ioﬁkerufm. Let UJOCEfm be a
neighborhood of . Denoting as Py, the projector
m

defined by the macroscopic mapping ¥#(+), we see that the

image £, (UJO)CTfm 1s a neighborhood of zero in Tfm,
m

and, hence,
+
P’?} (UJ. )ﬁTf 73

m
m 0

In other words, there exist strictly allowed vectors
J(f,) that transform into strictly forbidden vectors
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T}’ under the action of projector Py, . Onm contrary, a
m- _ il

m

strictlyiallowed neighborhood ¥ always transforms into

J
a strictly allowed neighborhood 3nder a projection which
satisfies condition (2. 19).

The uniform character of condition (2. 19) might be
illustrated with the following example. Consider all
kinetic equations with the Boltzmann A-function (i.e.
all BE with all possible collision integrals including
rigid spheres, Lennard-Johnes, BGK, etc) and a fixed
manifold (say, the TMS manifold). Then, if we derive the

induced dynamics for Mo using only linear mappings

s
(such as fvideV, IVideV, etc; see [2]), then, for some

fﬁEmTMS’ there exist collision integrals for which the
induced dynamics will not satisfy the thermodynamicity
condition in the point fm (see in this connection the
paper [21]). The only condition which will give
thermodynamic induced dynamics for all BE 1s the
realization of condition (2. 19) for Bous (201

Thus, in this section, we have introduced a method
for constructing the thermodynamic parameterization in
the general case, and thus we have solved the Problem 1
of Section 2. 1. In the next section we will comnsider an

approach to correct dynamic noninvariance.
2.3 Iterative Methods for Invariance Eguation

In this section we introduce Newton-type procedures
for a search of corrections to a dynamic noninvariant
manifold M. We consider the case when the manifold is
parameterized with macroscopic parameters #M: M={f(¥))}.
In the preceding section we have learned {o construct
thermodynamic macroscopic parameterization. Thus, when

we are developing procedures of corrections, we are free
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to pay no‘attention to whether {f(M)} is thermodynamic
or not: thermodynam1c1ty ‘can be always arranged in the
end of calculations. The 1nvarlance equation (2.15a) is
completely geometric, it contains no explicit tlme
dependence. The latter aphears only when we derive the
induced dynamicé, and only at this step we have to apply.
the principle of thermodynamic parameterization.

We start with the invariance equation (2. 15b). Let
the manifold {fD(M)} is given. Its dynamic noninvariance
means that the defect A(fO(M)) is not identical to zero.

In order to correct the manifold {fO(M)}, we search
for a new manifold {fI(M)}, representing fl(M) as

fl(M):fD(M)+6f1(M) (2.27)

This search should give a one-into-one relation
fl(M)e%fO(M). In order to arrange this relation, we

require’

Bfl(y)e kerp (2.28)

Lo )

In other words, we search for the new point fl(M)
labeled with the same value # as the point fO(M).

We are going to obtain the correction to {fO(M)}
via a method of successive approximations. We want that
this method would not require neither any stirong
restriction upon the choice of {fO(M)}, nor small
parameters, etc. We represent two methods of this type.

Method 1. Substitﬁting expression (2.27) into
(2. 15b) instead of f(#), and next preserving linear in
6f1(M) terms, we obtain a formal 1linear in 6f1(M)

equation:

D,Of (MY°D M(F) | ACINE ARES

, ,
+D F (H)y°DM(F) “(OF (M), T(f (M))-
Mo f F=f (i) 1 0
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.]fo(f)ifz (Gfl(M))+

_|i-p.f sy M(f)'
[ o f r £y o)

T (4)
+A(f0(u))=o (2.29)

Here D%M(f)l . is a bilinear operator (the second
f=f0(M)

differential of ¥(f)), and ij(f) is the linear
f=fO(M)

operator (the differential of the mapping J(f): E—E).
Equation (2.29) 1s the first iteration of the
Newton method ([22] as applied to équation (2. 15b).
constraint (2.28) dis the additional <condition for
unambiguous soclvability of equation (2.29). Eqguation

(2.28) initializes the method of successive
approximations for solving +the invariance equation
(2. 15b).

It is clear that the first and the second terms in
(2.29) give the linmear variation of the projector: the
first term gives the variation of the image of the
projector, while the second term gives the variation of
1ts kernel. The rest of the terms in (2.29) give the
variation of the vector field.

Method 2. Wwe search for a new manifold {fI(M)}
where fthe vector field J(fl(M)) is parallel to the

tangent space T In linear approximation, we obiain

ANC A
an equation for the first correction 6f1(M) (2.27) as:
P (-)—1](J(f (MY+D 2T () (OF (M)Y))=0  (2.30)
[ fO(M) 0 i . f:fo(M) 1

Aadditional condition for this equation 1is again the
constraint (2.28).

In order to demonstrate the semse of +the two
methods proposed, we will consider the case of linear
manifolds for linear dissipative systems.

Consider real Hilbert space ¢ with the scalar
product (f, g), and a linear dissipative system
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df ydt=Af | ‘ (2.31)

with the functional #(f) - :
| H(f}:%(f,f) | (2.32)

In (2.31), A4 is a linear, negatively defined, bounded,
and selfadjoint operator, 4:6—¢. We assume that the
spectra of 4 consists of non-degenerated eigentvalues

:)\,(m), m=0, 1, ..
The dual variable Hf (2. 18) 1is

W=t Pprg=(f,2) (2-33)

Consider linear manifolds mezae, where (e, €)=1, and
a<R (1. e. M, is a line in G, defined with the unit

veclor e).
Invariance equation (2. 15b) for ﬁe is:

e(e, Ae)Y-A4e=90 (2. 34)

Normalized solutions of equation (2.34) are unit vectors

€ m) which define the elgentspaces me(m)=ae(m)
of operator 4, corresponding to eigentvalues K(m)'
Assume that we have chosen the 1linear manifold

M =ae., and e. is not the eipentvector of operator 4.

30 0’ 0
We have to correct the initial manifold me in order to
. 0
make 1t closer to a solution of equation (2. 34).

we search for a new Jlinear manifold me =ae,. 1t is
1

sufficient to find ‘any vector Xleme , then
1
n, =3(X1/"X1"). We search for x, in the form (2.27):
1
x1=60+6x1 (2.35)
Additional condition (2.28) yields:
(@x1,60)=0 (2.36)

Method 1 (formula (2.29)) gives:

(A—(eo,AeO)Id)(60+5X1)=260(@X1,(Af(eO,AeO)Id)eO) (2.37)
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Here Id - is the identy operator. Using additional
condition (2. 36), we obtain the unique solution of
equation (2.37):
! -1
80+5X1= 3 (A-(€,, 46 )1d)
(60,(AT(50,A€0)Id) €,)

e, (2-38)

Being rewritien 1in the basis e expression (2.38)

(m)’

gives:

e +6x1 x 3 oe (2.39)

0 (m) o

(m) (m)_(eos Aco)

we see that the 1leading term of the series (2.39)
corresponds to the number m  which gives the minima to
the function z(m)zlh(m)—(eo,Aeo)L In other words, the

leading term corresponds to the eigentspace mc ., which
(m )
is the r"pearest neighbor" of the 1inear manifold me .

0
Thus, Method 1 gives a search of the eigentvector e , .
(m )
Method 2 (formula (2.30) gives:
(Id—eo(eo,-))A(eO+6x1)=o (2. 40)

Taking into account the additional condition (2. 36), we
obtain the unique solution of equation (2. 40):

1 -1
eo+®x1= ‘ T4 e, (2. 41)
(EO,A 60)
In the basis e(m) we obtain:
(€ ; €4}
60+5x x 3 e (m)” 0 (2. 42)
1 (m) (m) A

(m)

The leading term of the expansion (2. 42) corresponds to
the npumber m, which Jlabels the eigentvalue with the
minimal module. Thus, Method 2 results in a search for

the eigentvector € m. which 1s the direction of the

"slowest relaxation" to the equilibrium point x=0.
The example of linear manifolds for linear
dissipative systems considered shows the difference
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- between the two methods for obtaining corrections. The
chOidg“of a.mefhod iﬁ particular applications'depends on
the bﬁysical_scnse.of the problem. In particular, Method
2 ié  preferable when one searches for invariant
manifolds with slowest relaxation properties, and it
will be wused in Section 4 for derivation of
hydrodynamics from the Boltzmann equation..

Thus, we have introduced the two main objectives

for constructing dynamic invariant manifolds for

dissipative systems: the method of thermodynamic
parameterization (Section 2.2) and Newton-type
successive procedures to correct the dynamic

noninvariance (Section 2. 3). In the next section we will
combine these two procedures into the algorithm of
constructing dynamic invariant manifolds for dissipative
systems (the method of invariant manifold).

2. 4 Description of the Method of Invariant Manifold

The algorithm starts with the choice of an initial
manifold M, This choice depends on the particular
physical problem, and we are not able to consider this
question in general. However, the rest of the algorithm
does not essentially depend on this choice. Here we
assume only that mo satisfies the transversality
condition of Section 2. 2.

Step 1. Choose the initial manifold -

Step 2. Constiruct +the thermodynamic parameterization
{f;(M)} for the manifold M, in accordance with
the algorithm of Section 2.2

step 3. calculate the defect A(f;(M)) (2. 15a). If
A(fU(M))EO, theqk m is a dynamic invariant
manifold. If A(fD(M))io, then search for a mew
manifold m in accordance with Method 1 or
Method 2 of sSection 2. 3.

Step 4. Construct the thermodynamic parameterization
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{f (#)} for the manifold ™, in accordance with
the algorithm of Sectiom 2. 2.
Then the proéedure is continued (go to step 3).
In the next section we will discuss physical ideas
behind the method of invariant manifold. '

2. 5 Physical and Geometrical Interpretation

The method introduced in Section 2.4 is based on
two points: 1) thermodynamic parameterization (Section
2.2y and, 2) successive corrections of the dynamic
noninvariance (Section 2.3). These points reflect the
Problem 1 and the Problem 2 outlined in Section 2.1, and
they give the immediate formalization to the two general
assumptions of macroscopic kinetics:

1) The choice of any approximated reduced description
(i.e. of any manifold) always involves an implicit
assumption on decomposition of times of relaxation.
2) A dynamic invariant manifold of slow motions is
located in a neighborhood of the chosen approximation.
when obtainiﬁg the thermodynamic parameterization
for the initial manifold M we act¢ as If a times
hierarchy hypotheses corresponded to the choice. This
means that we acft as if a '"rapid" relaxation to the
states fmém occurs 1in some neighborhood of the manifold
, and then a "slow” motion along M takes place. During
relaxation, the Lyapunov functional #(f) decreases, and
at the end of rapid processes it reaches a minimum on
manifolds of rapid motions. The gradient of the Liapunov
functional 1is mormal to these manifolds of rapid motions
at the minima points. Therefore, in linear
approximation, equation an'fzuf £y, 1S valid for those
i m

points f which relax to the point fm in rapid processes.

In other words, in linear approximation, rapid

relaxation occurs on hyperplanes of rapid molions Pf
m
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(2.24), the latter are linear -approximations to the
manifolds of rapid motions. | |

~ Duality principle (2.23) states that the p01nt f
is the only point of minima of the functlonal on the

hyperplane of rapld motions Tf . In general, the
' m

hyperplanes of rapid motions Tf are nponparallel for
m

different points £ <M

In order to create a coordinate system on R, we
simply have to add some macroparameters M#(f). This
addition is almost arbitrary, one should only supply the

independence and completeness of the set {Mf (F)Y, M( )}
"

in the mneighborhood of M Then the manifold M will be
parameterized with the set {M; (f Y, M(fm)}
: m

The choice of the set {M; (Y, M(£Hy)y}y yields the
m .

following picture of rapid relaxation in the
neighborhood of the manifold M the system relaxes

towards M along the planes of rapid motions Rp . The
m

plane of rapid motions Ry which includes the point £
m

is the cross- -section of the hyperplane of rapid motions

Lr

m

with the planes {lefM(f)t ‘(f-T )=0}:
n
‘ [=f
m
R ={flM* (F-f_y=0; DM(F f-f o}
fm fm m) r ) ’ = f B m)

The simplest case occurs when #(f) is a set of linear

functionals.

The hyperplane of rapid motions :Pf is the only
m

hyperplane where the levels of the functional #H(f)
"surround® the point fﬁr This 1illustrates the duality
principle (2. 23).

Thus, in Step 2 of Section 2.4, we take (for a
while) that the initially chosen manifold is already a
"good” manifold of slow motions, and this alone vields
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the proper induced dynamics. Naturally, we understand
that the decomposition of motions assumed might be only
approximate. Hence, in Step 2, which immediately follows
Step 1, we reject this picture of relaxation, and we
approximately correct the dynamic noninvariance. Then,
in Step 4, we again act{ as if the corrected manifold 1is
a manifold of slow motions, etc.

The problem of dynamic invariant manifolds has a
very specific sound for dissipative kinetics. Namely,
one should expect that these manifolds are manifolds of
slow motion. This is rather a fine point, and we give
some additional explanations.

Usually when one talks about decomposition of
motions (i.e. about the times hierarchy), then one keeps
in mind the existence of a small parameter. This small
parameter should express the ratio of the time of rapid
relaxation to the time of macroscopic observation. One
may expect that the rapid relaxation results 1n a
"sufficiently good" manifold of slow motions (i.e. in a
"sufficiently invariant® manifold).

However, this situation is far from being simple.
There 1is always a place to doubt on whether the chosen
parameter is sufficiently small. Even for finite-
dimensional dissipative systems (e. g. chemical kinetics)
the steady-state manifolds might not always be referred
as to good approximations (see a precise study "The
Steady-state Approximations, Fact or Fiction?" by E.
Farrow and D. Edelson [23], and also [24]).

On the other hand, there are no small parameters in
the genmeral case, but still one can construct a "good"
approximation which approximately describes the
evolution at a considerable period. For example, the TMS
approximation illustrates this situation: a small
parameter lacks in the strong shock wave problem but,
nevertheless, one can consider the TMS approximation as
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a suitable approximation for this problem. ‘Hence, we
should take that the two assumptions mentioned above are
.éppropriate £d  the TMS approximation fat least
approximately). _

For a chosen approximated reduced description, one
can not say beforehand whether the decomposition of
motions indeed corresponds to the choice. Nevertheless,
we act as if the chosen manifold is already a r"good”
manifold of slow motions. This immediately leads to the
definition of hyperplanes of rapid motions wvia the
principle of decrease of the Lyapunov functional in
rapid relaxation as described above in Section 2. 2. It
is important that the method of invariant manifold
avoids a search for small parameters for constructing
the manifolds of rapid motions. Wwe obtain thermodynamic
parameterization for the initial manifold. At the same
time we remember that the chosen approximation is not a
dynamic invariant manifold. we are able to measure the
error A(fﬁ) caused by noninvariance, and we are able to
approximately correct this error by solving the linear
equation of the first Newton-type iteration. Then we
again act as if the corrected manifold is a good
manifold of slow motions, etc.

In the next section we apply the method of
invariant manifold to the Boltzmann equation.

3. THE CONSTRUCTING OF DYNAMIC INVARIANT MANIFOLDS
FOR THE BOLTZMANN EQUATION

In this section we apply the method of invariant
manifold to the Boltzmann equation (BE). Firstly, we
will interpret the key notions of section 2 for BE.

The phase space F (Section 2.1) consists of
distribution functions f(?,}) which depend on the
spatial wvariable X and on velocity variable V. The
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| varlable X spans an open domain Q CR and the vafiable
v spans the space R we requ1re that (v, X)GF are
nonnegative functlons, and also that the following
integrals are finite for every }eQX (the existence of

moments and of the entropy):

(1;1513) 1y 12 %3 o sa s
I} (F)= Iv v, Vs SF(v, x)d v, 1,20, 1,20, 1,20, (3.1a)
B (£y=[F(V,%)(1nf (¥, %)-1)d%v, H(F)=[H, (FHd x (3. 1b)
X X

. . . >, .
Here and below integration in v 1is made over ﬁi, and 1t

. . : > L.
is made over QX in x. For every fixed XGQX, I, and #,
X X

might be treated as functionals defined in £,
we write BE in the form of (2.1) using standard

notations [2}:

of 8f
t_J(f), J(f):—vs 6XS + Q(f, (3. 2)

Here and further a summation in two repeated indices 1is
assumed, and Q(f,f) stands for the Boltzmann collision
integral [1]. The latter represents the dissipative part
of the vector field 7(f) (3.2).

In this paper we consider the case when boundary
conditions for equation (3.2) are relevant to the local
with respect to X form of the H-theoren.

For every fixed ¥, we denote as Hf(f)'the space of
X
linear functionals

4
> . e
ua 0 Jb,vHfw, x)d,
=40
whc:e ¢i(3) represent summational invariants of a
Collision [1, 2] (¢ =1, P =v_. I=1,2, 3, $4_v2) We write

i1
(modH (£f))y if an expression is valid within the accuracy
X
of adding a functional from ﬁ;(f}. The local HA-theorem
X

states: for any functional

B (£)=JF(%, %)(1nf (¥, X)-1)d°v (moda’ (£)) (3. 3)
X X
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- the following inequality is valid:

da, (F)rdt=fo(f, ) . ;'1nf(3,})d3véo ; (3. 4)

X f=f(v, x)
Expression (3. 4) 1s equal to zero if and only if
. ,
Inf= % a.(x).(v).
oo L i
Although all functionals (3.3) are equivalent in
the sense of the FK-theorem, it is convenient to deal

with the functional Ha(f)=ff(3,§)(1nf(3,?)ux)d3v.
X
All what was said in Section 2 can be applied to BE

(3.2) with no significant changes. Now we will discuss
some specific points.

i) Local manifolds. Although the general description of
manifolds M<F (Section 2.1) holds as well for BE, a
specific class of manifolds might be defined due to the
different character of spatial and of velocity
dependencies in BE vector field (3.2). These manifolds
will be called local manifolds, and they are constructed

as follows. Denote as Fioc the set of functions f(?;)

with finite integrals
i, I

(i1
1 v F(hddy, 120, 1,20, 1,20,

1.) 1
a) I 23 (f)=fv11v

by H(F)=[F(v)Inf(v)d’v

In order to construct. a local manifold in F, we,
firstly, comnsider a manifold in Fioe Namely, we defline
a domain A4<B, where¢ £ is a linear space, and consider a
smooth immersion Aw*FlOC:aFQf(a,é). The set of functions
f(a’$)€Floc’ where a spans the domain 4, 1s a manifold
in Fioer Secondly, we consider a7/ bounded and
sufficiently smooth functions a(}):QX—eA, and we define
the 1local manifold 1in F as the set of functions
f(a(}),ﬁ). Roughly speaking, the local manifold is a set
of functions which are parameterized with '}-dependent
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functions 3(}). A local manifold will be called a
locally fimite-dimensional manifold if B is a finite-
dimensional linear space.

Locally finite-dimensional manifolds are a natural
source of initial approximations for <constructing
dynamic invariant manifolds in BE theory. For example,
the TMS manifold (2. 3) and the LM manifold (2. 4) are
locally finite-dimensional manifolds. They are
parameterized with finite sets of }—dependent functions.
The LM manifold is parameterized with five macroscopic
parameters (i.e. with five hydrodynamic moments), the
TMS manifold is parameterized with two coordinates,
a_(}) and a+(}). Further, all expressions corresponding
to the functiom f(a(x),v) will be labeled with a(x).

ii) Thermodvnamic parameterization. The specificity of

thermodynamic parameterization for manifolds in BE
theory is due to the type of the Boltzmann #-function.

Namely, the functionals #_ (f) (3.3) are homogeneous: for
X
any A, where 0<A<®, we have:

B (AM)Y=AE, (£} (mod#o (£)) (3. 6)
X X X

The dual variable Mf (2. 18) 1s:

=D H_)(f)

M =DpH (1) 5 _—
r fzf(},ﬁ) r =f(x, v) r X fﬁf(x,ﬁ)
=1nf(v, %) (3.7)
Consider the local form of M; (Y (2.21):
* m
M, (F)=[f, 0O)lnfg(v,X)d (3. 8)
X,fm '
The value of the functional Mi in the point ﬁmem is
x, I,
S |

equal to:

M (fﬁ)=fﬁm($,})lnfﬁ(g,})d3vEﬁé(ﬂm) (modﬁg(fm)) (3. 9)
X X

>
x, Ly
Thus, equation (2.12) for +the wmacroscopic parameter
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9

M. (fyg) is the entropy.balance equation.

It is necessary to stress here that, in spite of
external simplicity of this result (the entropy balance
equation is indeed “natﬁral“L the idea to use
functionals (3:8) for constructing the thermodynamic
projector is not evident. Indeed, functionals (3. 8) are
neither usual moment functionals (3. 1a) nor the entropy
(3. 1b) in the neighborhood of the manifold M According
to the physical interpretation (Section 2.5), the
entropy balance equation appears immediately from the
idea of decomposition of motions in the neighborhood of
the manifold W

Let {f(a(}),ﬁ)} be a locally r-dimensional mani-
fold, where a(}):(al(}),...,ar(})). We now give explicit
expressions for thermodynamic parameterization of
{f(a(}j;g)} in the dimportant particular case when one
adds r-1 independent linear functiomals L (f) to the

* X, 1
functionals # () (3. 8):
X,fﬁ
LQ-_(f)=IJi(3)f(},3)d3v, i=1,...,r—1 (3.10)

X, 1
The natural source of these linear functionals are, for
example, the moment functionals (3. 1a).

For every fixed }, we can consider {f(a(}),g)} as a
finite-dimensional manifold.

The thermodynamic macroscopic mapping M:(f) is

X
defined as:
M (f) = | (3. 11a)
X > - >
=([f(x, V)lnf(a(x), vydiv, f]i(V)f(},3)d3v, I=1,...,r-1)

-

This mapping equips the manifold {f(a(}),v)} with a new

coordinate system:

H(a(Xyy=[Ff(a(x), vylnf(a(x)y, vyd v,
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Li(a(}))=fli(?)f(a(}),?)d3v, =1, ..., r~1 (3. 11b)
Thus, in -detail notation, we can write
* -> > > -»>
{f (H(a(x)), Ly(a(x)), ..., L. (a(x)),v)}

for the manifold {f(a(}),g)} parameterized with macro¥
scopic parameters (3. 11b). '
Thermodynamic projector P , (J) is defined as:

* a(xy

P, (J)= o (3. 11¢)
a(x)
or" (H(a(X)), L,(a(x)) L. (a(X)), V)

— — 2 Il —L[Inf(a(x), vysd v+

OH{a(x))

r-1 8f (H(a(x)), L. (a(x)), ..., L (a(x)),v) .

) : = -1 f]i(v)1d3v
o1 0L (a(X))

Dynamic equations for macroscopic parameters
(3. 11b)y 1induced with the BE wvector field (3.2) via
thermodynamic projector (3. 11c) are:

SH(a(X)) L R
e + divj (a(x)) = O(a(x));
5t
OL;(a(X)) ., R
+divy, (a(x)) = R_(a(x)); (3. 11d)
Ot i <
Here

Ty(a(x)=[veax), vilnf(a(x), v)d v;
Fpa)=[v (Vyf(a(x), v)ddy
1

O(a(x))={1nf(a(x), vyo(f(a(Xy, v), fla(x), vy)d>v;

R (a(x))=f1,(V)O(F(a(X), V), F(a(X), v))d v (3. 11¢e)
Equations (3.11d) might be also treated as r dynanmic
equations for unknowns ays .., a,.

111) Dypamic invariance. All considerations of Section 2

concerning construction of dynamic invariant manifolds
are completely applicable to BE vector field (3.2). We
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represent only an Equafion for the first correction to
the 10ca11y r-dimensional manifold M _{f (a(x) V)}
Ve search for a flrst correctlon 1n the form of

(2.27): |
F(axy, v)=Fy(a(x), vVy+Of (a(x), V) (3.12a)
Considering the thermodynamic parameterization of m,

given with expressions (3.11), we obtain an equation
(Method 2 of Section 2. 3)):

(PO, (-0t (BF (a(X), )+ (F (a(X), ¥))=0;
a(x) lin, a(x)
0 Og
Jo (8)=-V + L (8
lin, a(x) s Oxg fo(a(}),ﬁ)
Bfo(a@), vy=(P , ()=1)J(£y(a(X), v)) (3. 12b)
a(x)
Here L TN stands for the Boltzmann collision
fola(x),v)
integral, linearized in the point fo(a(}),g), and
projector P , 1is defined according to (3. 11c).
a(x)

Additional conditions (2.28) for equation (3. 12b)

are:

flnf(a(?),?)@fl(a(ﬁ),3)d3v=0,

f]i(g)éfl(a(}),g)d3v=0, i-1,...,r-1 {(3.12¢)

According to the iterative scheme of section 2.4, after
solving equation (3.125), we have to introduce new
thermodynamic parameterization, and next we can make the
second iteration, etc. In some cases, W€ can use
linearizations of vector field different from that in
equation (3. 12b). For  example, instead of the pure
Newton scheme, we can use its Kantorovich’s modification
[22] (i.e. linearization of operator J(f) in a fixed
point at every iteration).

iv) Invariance equation in a moving reference system.
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In some cases, it is convenient to consider BE vector
field in a reference system which moves with the flow
velocity. In this reference system, we define the BE

vector field as:

df df o8f or
=7 (), - a7 = BF *t U UF
dt ™ u t ot 7 s 6XS
T ()= Fyy-2L £ f 313
g==(v-u, (I))—3, + QU 1) (3.13)
X, S S
Here u, (f) stands for the s—th component of the flow
X, s
velocity:
u, (f):n_jl(f)j"vsf(?,})d%; n, (F)=f ¥, x)dv (3. 14)
X, s X X

In particular, this form of BE vector field is
convenient when the initial manifold mo consists of

functions fm which depend explicitly on (3—3&(f))
0 X
(i.e., 1f functions fﬁ U do not change under velocity

0
shifts: 3—+3+Z, where ¢ is a constant vector).
Substituting Ju(f) (3.13) 1imstead of J(f) (3.2)
into all expressions which depend on the BE vector
field, we transfer all procedures developed above into
the moving reference system. In particular, we obtain
the following analog of the invariance equation of the
first iteratiom (3. 12b):

2", (-1 (OF (a(R), P+ (£ (a(X), Vy)=0;

9

aix) g,lin,a(x)
A N (g)={ﬂ§1(f0(a(})))fvsgd3V+
7, 11in, a(x) X :

8F (a(x), V)
3 -1 > 3 0
+u, (Lo (ax)yyyn, (£ cax)y)fgd vy -
X s x 0 Ox g

> 3
—(vu, (Fo(a(x)))) g + L (£);

% s s [y(a(x),v)
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* v Fa > > .
5 Uy (Fp(acx), V) (3. 15)
a(x) .. -

additional conditions (3.12¢) do mnot depend on the
vector field, and thus they remain valid for equation
(3. 15). |

v) Positivity and normalization. When searching for a

correction, we should be ready to face two problems that

M(F (a(X), v))=(P

are typical for any method of successive approximations
in BE theory. Namely, the first-of this problems is that

the correction

f =f, +Of
mk+1 aRk mk+1

obtained from the linearized invariance equation of the
k+1-th iteration may be not a non-negatively defined
function and thus it can not be used directly to define
the thermodynamic projector for the k+1-ih
approximation. In order to overcome this difficulty, we
can freat the procedure as a process of correcting the
dual wvariable Mf (3. 9) rather than the process of
immediate correcting the distribution functions. Then,
at the &4+i-th iteration, we search for new dual
variables Mfl

mk+1'
v =M + Ou (3.16)
f'mk+1 £ mk\ £ mk+1
Due to the relationship Mfe—éf (3.9), we have:
-1
oY) =0 +Q(BFE ., . =f, Of (3.17)
FiMry Mg Brrt Tei1 M Ppeq

Thus, solving the linear invariance equation of the £-th
iteration with respect to the unknown function 5fm .

k+1
we find a correction to the dual variable @ﬁ (3.17),
k+1
and we derive the corrected distributions fm as
k+1
f, =eXp (M +P y=fy exp(Q ) (3. 18)
mk+1 fimk ﬁk+1 mk mk+1

Functions (3.18) are positive, and they satisfy the
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invariance equation and the additional conditions of the

type (3. 12c) within the accuracy of @ :
S - k+1
However,. the second difficulty which might occur is

that functions (3.18) might have no finite integrals
(3.1). In particular, this difficulty can be a result of
some approximations used in Solving equations (3. 12b) or
(3.15). Hence, we have to rregularize" the functions
(3. 18). A sketch of an approach to make this

regularization might be as follows: instead of fm
k+1

(3. 18), we consider functions:

reg

£4P) =fy exp(Pp  +0""5(B)) (3. 19)

Mrer My k+1

Here @F°8(By is a function labeled with P<B, and B is a
linear space. We assume that integrals (3. 1a) and (3. 1b)
are finite for all values P in (3.19). Then we deriver
B, from the condition of coincidence of macroscopic
parameters

Mk(fggtillpﬂfk(fmk) (3.20)
Here M, is the macroscopic mapping of the %£-th
approximation. Further consideration of this procedure
remains out of frames of this paper. In particular,

(B.)

regularization fm is reqguired for the first time only
1 .

at Step 4 of Section 2.4 (i e for obtaining

thermodynamic equations for the first correction). The
two difficulties mentioned here are not specific for the
approximate method developed. For example, corrections
to the LM distribution in the Chapman-Enskog method [1]
and the thirteen-moment Grad approximation [4] are not
non-negatively defined functions, while the thirteen-
moment quasi-equilibrium approximation [10] has no
finite integrals (3. 1a) and (3. 1b).
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4. CORRECTIONS TO THE LOCAL MAXWELL MANIFOLD

“In this sectioh we apply the method of invariant
manifold to a particular situation when the initial
manifold consists of local Maxwellians (2. 4) (the LM
manifold). This manifold and its corrections play the
central role 1in the problem of derivation of
hydrodynamics from BE. Hence, any method of approximate
investigation of BE -'should be tested with the LM
manifold. Classical methods (Chapman-Enskog and Hilbert
methods) use Taylor-type expansions into powers of a
small parameter (Knudsen number expansions). However, as

we have mentioned above, the method of dinvariant
manifold, generally speaking, assumes no small
‘parameters, at least in its formal ©part where

convergency properties are not discussed. we will
develop an appropriate technique +to consider the
invariance equation of the first iieration in Section
4. 2. This involves ideas of parametrics expansions of
the theory of pseudodifferential and Fourier integral
operators [25, 26). This approach will make it possible
to reject the restriction of using small parameters.

4. 1 Equation of First Iteration

The LM manifold consists of distributions fO which
are labeled with parameters n, 3, and 7

R 2Tk Ty =3 /2 3 .2
fO(H,U,T)zﬂ[ p ] exp{— @é%g%l—} (4. 1)

Parameters n, 3, and 7 1in (4.1) are functions
depending on X¥. In this section we will not indicate
this dependency explicitly.

Distribution fo(ﬂ,z,fj is the unique sclution of

the variational problem:
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H(f):fflnfd3v—+min for Mo(f)=f1~fd3v=ﬂ;
‘ _ (4. 2)

3ﬂkBT

3 - - o B
Mi(f)zfvifd vanu . I=1,2,3 M4(f)_fv fd v=——-"—+nu

Hence, the LM manifold is a quasi-equilibrium manifold.
Considering o, 2, and T as five scalar parameters (see
the remark on locality 1in Section 3), we see that LM
manifold is parameterized with the wvalues of Ms(f),

5=0,...,4, which are defined in the neighborhood of LM
manifold. It 1s sometimes convenient to consider the
variables Ms(fo), $=0,...,4, as new coordinates on LM

manifold. The relationship between the sets {Ms(fo)} and

> .
{n,u, T} 1s:

T ! o . __m -1 _y L
n=My; u=M M. I=1,2,3; T—3kB o (M, =M M M) (4. 3)
According to (4. 2), the parameterization with
Mo(fo)’“"’M4(f0) (or, which is the same, with n, 7, and
7) is thermodynamic.
Thermodynamic projector P S (/) onto the
fO(H,U,T)
tangent space T 5 is defined as:
fO(H,U,T)
4 Of (n, U, T)
o 3
P (J)= ), ¢ 7d7v (4. 4)
fo(n,E,T) s=o ¥ o

Here we have assumed that g, ;, and 7 are functions of
My, .- .. #, (see relationship (4. 3)), and

O’
Go=1, $=v_, i=1,2,3 ¢4:V2 (4. 5)

Calculating derivatives in (4. 4), and next returning to

. > .
variables n, v, and 7, we obtain:

P (Jy=Ff (1,8, T) [l'_mui (v —u )+[mu2 uZ][m v-u)%
fo(ﬂ,z,T) 0 11 HkBT 1 71 3ﬂkB n ZKBTZ
20 . > > 2
é_)]f1-1d3v+[ LA 1[m(v—u) 3 ]] 3
—_ (V.-—u.) — 2 fV-JdV—i—
27 nkBT 1 1z SnkB 2kBTz 2T 1
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/i m 3 3'2"3'" 2..3 ' ' - :
. [ ——t ——qfv Jd V}' (4. 6a)
kg szT2 2T | :

It is sometimes convenient to rewrite (4. 6a) as:

. )

P . (J):fa(n,ﬁ,f) » oS et yav (4l eby
fo(ﬂ,u,T) s=0 fO(n,u,T) fo(n,u,T)

Here )

GO R =n 112 ¢d) R :(%)llzci, i=1, 2,3,
fo(n,u,T) : fD(n,u,T)
(4) .2 .1/2,.2 3. _ /2,

¢f 3 T)—(3H) et -gy e mi2kg Ty (v ey (40 T)

O 3 El

It 1s easy to check that

[fy(no,ry oK) oD a3v=0,, (4. 8)
fO(n,u,T) fo(n,u,T)

Here 6k1 is the Kronecker delta.
The defect of the ©M manifold at the point

fo(n,ﬁ,r) is:

ACE (1, T, T))=P qu uu)afDULZ’Tanf uxﬁ,r)ﬂ—
0 _ fO(H,Z,T) s S 5xS 0
—[—(vS—uS)BfOéZ;U’T)+0(f0(n,3,T))]=
afo(n,Z,T) afo(n,B,T)
=Pf0(n,3,r)[_(vs_us) i ]+(v5—us) 5 (4. 9)

Substituting (4. 6a) into (4. 9), we obtain:

> > 2 '
> _ > m(v-u) 5 81n7T
A(fo(ﬂs U,T))—fofﬁ, U’T){[ szT - 2](Vi—U-)aXi +
Ou
Ji/i 1 > o 2 S
PR r (V) (Vi) =30 (V) )Sxi} (4.10)

The LM manifold is not a dynamic invariant manifold
of the Boltzmann equation (the defect (4.10) 1s not

identical to zero).



604 GORBAN AND KARLIN

we search for a correction to the LM manifold as:
_flgn,ﬁ,r)zfo(ngz,r)_+ 6f1(ﬂ,3;rj o (4. 11)

In this paper we will use the Method 2 (see section 2. 3)
for obtaining +the correction §f1(ﬂ,3,T) because we
search for a manifold of slow (hydrodynamic) motions. We

introduce the representation:
Gfl(n,ﬁ,T)zfo(n,z,r)w(g,ﬁ,T) (4.12)

Then the eqguation of the first iteration im the form of

(3. 17) for the correction @(n,z,T) 1s:

5f0(n,3,T)
{Pfo(ﬂ,g,Tg’)“l}(‘(vs‘”s) 3%, +
+f (n, 0, TV (©y - (v —u )a(fO(H’U’T)@) -
-0 fo(ﬂ,ﬁ,T) s 8 5Xs

—ﬂ"l(fo(n,ﬁ,T))[fvsfo(ﬂ,ﬁ,r)@d3v +

Of (n I, 7Y
> > 3 gL Mo
+us(f0(ﬂ,u,T))IfO(n,u,T)@d v T }=0 (4. 13a)
Here fb(n,ﬁ,T)L L, (®) 1is the linearized Boltzmann
' fo(n,u,T)
collision integral:
= S Y ->
L (Oy=Jw(v', v |v,v Y (n u, T)>
£ (ma,T) 1 17740

0
X{@f+@;—$1—®}d3v’d3v;d3vl (4. 14)
and W(?',31|3,31) is the kernel of the Boltzmann
collision integral, standard notations 1label the
velocities before and after a collision.
Additional condition (3. 14c) for equation (4. 13a)
has the form: '

P L (Ly(n, 0, T)P)=0 (4.15)
fo(n,u,T)

In detail notation:

fl‘fo(n,z,T)@d3V=0, fvifo(ﬂ,E,T)@d3v=0, Ii=1, 2, 3,
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'Ivzfﬂ(n;ﬁ,r)®d3v=0 ' : : (4. 16 .
. Eliminating iﬁ  (4. 13a) the terms containing

f?SfO(H,Z;T)©d3V and Ifo(ﬂQZ,T)®d3v with the aid of
(4.16), we obtain the following form of -equation

(4.13a):
Of ,(n, U, T)
. O(f,(m, u, TYP)
+f0(n,u,T)L , (O - (VS-US) aXS )=0 (4.13b)

- Iy(m,u, T)

In order {o consider the properties of equation
(4. 13b), 1t is useful to introduce real Hilbert spaces

G R with scalar products:
fo(n,u,T)
@), = [f (0L T (4.17)
fo(n,u,T)

Each Hilbert space is associated with the corresponding
LM distribution fo(n,z,T).

The projector pP 5 (4. 6b) 1s associated with a
fo(n,u,T)

projector II which acts in the space &

> S :
fo(n,u,T) fﬂ(n,u,T)

II (@Oy=f3' (7, 7)P (fo(n;ﬁ,r)®) (4.18)

> >

fO(H,U,T) ‘fo(n,u,T)

1t 1s an orthogonal projector because

& (s) (5)
II , (=0 L, (¥ ) (4.19)

. >
fﬂ{n,u,T) $=0 fO(ﬂ,U,T) fo(n,u,T) fo(n,u,T)
Here ¢(S) N are given by the expression (4. 7).
fo(ﬂ,u,T)

We can rewrite the equation of the first iteration
(4. 13b) in the form:
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L @) + K @ =0, (420)

. >
_fo(n,u,T). fo(ﬂ,u,T) fo(ﬂ,u,T)

Notations used here are:

_.1 = >
D =f_ "(m u, TYA(f (m,u, T)); K (0)=
oo 1y ° 0 fo(n,ﬁ,r)

O(f (1, u, THP)

-1 >
= (1l (*)-1) £ (3, 10, TY(V U )3 (4. 21)
fo(ﬂ,z,T) 0 8 Xs
The additional condition for equation (4.20) is:
() ., O =0, $=0,...,4 (4.22)

> >
fo(n,u,r) fO(H,U,T)
Now we will 1list the properties of the equation

(4. 20) for usual models of a collision [1]:

a) The linear integral operatlor L 5 is
fO(H,U,T)

selfadjoint in the scalar product (-, *) N , and
fO(H,U,T)

the quadric form (Q, L , (®)) 1is negatively defined
fo(ﬂ,U,T)

in ImL S :

fO(H,U,T)

by The kernel of L 5 does not depend on fo(n,Z,T),
: fo(n,u,T)

and it is the linear envelope of the polynomials ¢0=1,

: 2
¢i_vi’ i=1, 2, 3, and ¢4mv .
c) The RHS D N is. orthogonal to kerL S in

the sense of the scalar product (-, *) N :
fo(n,u,T)

d) The projecting operator Il . is the selfadjoint
fo(n,u,r)

projector onto kerL - :
fo(ﬂ,U,T)

11 (0y = kerL (4. 23)

fo(n,Z,T) fO(n,E,T)
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~Projector Il R

projects ‘orthogonally. ’ 

) fo(nu 1) -
€) The image of the operator X 5 is orthogonal to
g : ' fO(ﬂ,U,T)' g
kerL S .
' fo(n,u,r)

f) Additional condition (4.22) require the solution of

equation (4. 20) to be orthogonal to kerL S )
fﬁ(n,u,T)

These properties result in the necessity condition
for solving the equation (4.20) with the additional
constraint (4.22). This means the following: equation
(4. 20), provided with constraint (4 22), satisfies the
necessary condition for to have an unique solution in

Iml > }
fo(ﬂ,u,T)

Remark. Because of the differential part of the operator

K - > , we are not able to apply the Fredholm
fo(n,u,T)

alternative to obtain the onecessary and sufficient
conditions for solvability of equation (4.22). Thus, the
condition mentioned here is, rigorously speaking, only
the necessity condition. Nevertheless, we will still
develop a formal procedure for solving the equation
(4.20).

To this end, we paid no attention to the dependency
of all functions, spaces, operators, etc, on X. It is
useful to rewrite once again the equation (4.20) 1in
order to separate the local in X operators from those
differential. Furthermore, we will replace the subscript
fo(n,E,T) with the subscript.} in all expressiomns. We

represent (4. 20) as:

g

a_)) E;)(‘p‘:_g('_‘-’)’ 3);
X

> > >
A oc (X VP-4 pp (X

Aloc(},3)¢&—{L}(3>@+(H}(3)~1)r}w};
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» O
[

Qu

Agspr (% v =T, ()=1) (V857 O

> 4 (SY,,(S)
vy g= 20077577, 2
X s=0 x X

OP=n™H 2 QI By e (1Y), se1 203,
X

¥ 7
2
¢£4)=(§3)1f2(c(},3)~%); ci(x,3)=(m/2kBT(}))1/2(vi—ui(}))
X
Su . 5> > 2
Olnn Vi i m(V—il) 3Y81nT
I =(V _~U )[ + (V .—U )5 + [ - *]———~J;
2 s s axs kBT i 71 axs ZkBT 2 aXs
> > M(g—zgz 5 OlnT
bx, ‘”*{[ 2k T E](Vi""i)ax. *
o 1y 222 Oug
+ kBT(((Vi_Ui)(Vs“”s)'s (7)Y gy (4. 24)
1

Here we have omitted the dependence on ¥ in the
. > -> > :
functions n(x}, u(x), and T(x). Further, if no
discrepancy might occur, we will always assume this
dependence, and we will pnot indicate it explicitly.

The additional condition for this equation 1is:

II(¢y)=0
X

Equation (4.24) is linear in . However, the main
difficulty in solving this equation is caused with the
differential in x operator A4 which does not

_ 5 iff
commutate with the local in x operator Ay 5o

4. 2 Parametrics Expansion

In this section we introduce a procedure to
construct approximate solutions of equation (4(23). This
procedure involves an expansion similar to the
parametrics expansion in the theory of pseudo-
differential (PDO) and Fourier integral operators (FIO).

Considering @=ImZ,, we write a formal solution of
X
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equation (4. 24) as:

. - 5 s | - -
@(},?)=<A10C{},$)~Adiff<?,5;,3)) L-nx, vy) (4. 25)
X : .
It is wuseful to extract the differential operator gg
i >
. 5 d =

from out the operator Adiff(x,gi,vy

> > > > 0 -1 > >
(p(X, V):(]-HBS(X’V)@XS) CP]_OC(X’V) (4' 26)

Notations used here are:
-1

> > > > > >
(PlOC(X,V)=A10C(X,V)(—D(X,V))=
=(-L, (V)= (7)-1)r, 1" (-0(x, ¥));
X X X
- > LSRN I (3 3 4 27
Bk D=y o (0 AL (-1 (v - )= (4.27)

=(-L, (") -, (") -1, 1AL (V) -1 (v e )
X X X X
we will now discuss in more detail the character of

expressions 1n (4. 27).
For every }, the function wloc(}’;)’ considered as
a function of 3, is an element of the Hilbert space &,.

X
It gives a solution to the integral equation:
> >
L, (V)9 oo~ (I, (V)=1) (£, Py, )= (~D(X, ¥)) (4.28)
X X X

This latter 1linear integral eguation has an unique

solution in imLﬁ(g). Indeed,

> X 4 -
kerAIOC(},V):ker(L}(V)+(H}(V)—1)f})+=
zker(zé(ﬁ))+ﬁker((H;(;)~1)F¢)+:
X X X
=ker (L, (v)) nker(r, (I, (¥v)-1)), and ¢ Al (V)5 ,={0}.
X X X X X X

Thus, the existence of the unigue solution of equation
(4.28) follows from the Fredholm alternative.

Consider the operator E(},Q;,g):

Ox
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2%, V)= (1-B (%, v) ) -1 (4.29)
87

X
One can represent it as a formal series:

R(X 9_ V)= 2 (B, (X, V) ] (4. 30)
7 BX m=0
Here
o, 0 > o)
[BS(}’?)EE_}ngs (},3)6X ... By (x,?)ax (4.31)
1 S1 mn Sﬂ'.?

Every term of the type (4.31) can be represented as a
finite sum of operators which are superpositions of the

following two operations: of the integral 1in v
operations with kernels depending on }, and of

differential in ¥ operations.
our goal is to obtain an explicit representation of

the operator R(X g_ V) (4. 29) as an integral operator.

__)5
Ox

If the operator BS(},g) would not depend on ¥ (1. e if
no dependence on spatial wvariables would occur in
kernels of integral operators, in Bs(}’g))’ then we
could reach our goal via usual Fourier transformation.

However, operators B (},3) and g—— do not commutate, and
s Xy
thus this elementary approach does not work. we will

develop a method to obtain the required explicit
representation using the ideas of PDO and IOF technique.

We start with the representation (4.30). our
strategy is to transform every summand (4.31) in order
to place integral in v operators BS(},g) left to

differential operators g}—. The transposition of every
. J > > ) £
pair #- B.(X, V) yields an elementary transform:

l o))

] (4.32)

)

(X, v) = B.(%, V)gfg [B (X, V),

@xk s Xy
Here [M, N]=MN-N¥ denotes the commutator of operators ¥

and N. We can represent (4. 31) as:
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(B (%, V)

Q

X

0
W

+ O([le_(}, ‘9’_‘_)’%@;]) | (4.33)
‘Here O(IBS_(}’§3,g}__}) denotes the terms which contain
7 Sy
one or more pairs of brackets [+, +}. The first term in
(4. 33) contains no these brackets. We can continue this
process of selection and extract the first-order in the
number of pairs of brackets terms, the second-order
terms, etc. Thus, we arrive at the expansion into powers
of commutator of the expressiomns (4. 31). 7
In this paper we will <consider explicitly the
zeroth-order term of this commutator expansion.
Neglecting all terms with brackets in (4. 33), we write:
6] 0

6X aX
S S

(X,V)...BS (X, V) (4. 33a)

> > 4 1
[Bo (X, Vg 1 = B
s 1 b

Here the subscript zero indicates the zeroth order with

respect to the number of brackets.
W bstitut i B_(% )"
€ 1now substitute eXpressions { S(X,V)axs] 0

m

(4. 33a) instead of expressions [BS(},g)g}—] (4.31) into

s
the series (4. 30):

o =

> g > +> > 0 m
R(X,~3,v) = ), [B_(X,V)z] (4.30a)
0 > 2y S 5XS 0

The action of every summand (4. 33a) might be defined via
the Fourier transform with respect to spatial variables.
Denote as F the direct Fourier transform of a

function g(},é):

Fg(},3)5§(1,3)=fg(},?)exp(-iksxs)dpx (4. 34a)

Here p 1s the spatial dimension. Then the inverse

Fourier transform is:

2%, )=F gk, V=2 Ple(k, Vyexpik x )dPk (4. 34b)
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Th@ﬂabtion of the operator (4.33a) on a function g(x, v)

1s defined as:

> 3 - '
[BS(},V)5;;1”0g(x,3)=

> > g a —_7) " > ik _x
= (B, (X,g)...Bé (},v)ax o gyeTy Pk Ve S SdPk=
1 mn Y s
1 n
| =(2%)“pfexp(jksxs){ikJBI(},?)]m 2% ¥ydPx (4.35)

The account of'(4.35) in the formula (4. 30a) yields the
following definition of the operator Ry
. “p iksxs _ s > 1~ > D

B (X, V)=(2T) Pfe (1-1k B (X, V)) gk, vidPk (4. 36)
This 1is the Fourier 1integral operator (note that the
kernel of this integral operator depends on % and on }).
The commutator expansion introduced above 1is a version
of the parametrics expansion [25,26], while expression
(4.36) is the leading term of this expansion. The kernel
(1-ik B, (%, v))™' dis called the main symbol of the
parametrics.

The account of (4.36) in the formula (4.26) yields

the zeroth-order term of parametrics expansion ®0(},$):

-1 s > —_
@0(},3)=F (1—1kJBJ(},v)) IF@loc (4.37)
In detail notationm:
A=A -p . __ N
Py (X, v)=(2%) V[ fexp(ik (X -~y )
1

. > > -1 > —
*(1-2k [-L, (V)~(IL (v)-1)r, 17 (L (v)-1) (v g—u (X))
X X X X

< [-L, (V)-(IL, (7)-1)r, 17 (-0(F. ¥))dPydPk (4.38)
y ¥ ¥y
we mnow will 1ist the steps to calculate the

function @0(},3) (4.38).
Step 1. Solve the limear integral equation

> > > > > >
[-L, (v)—(L(V)-1)r 1@y (X, V)=-D(X, V) (4.39a)
X X X
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and obtaln ‘the functlon @1 C(x V)

Step 2. Calculate the Fourler transform @100(},3):
wloc(},V)=fwloc(y,V)exp(—iksys)dpy (4.39Db)

Step 3. Solve the linear integral equation

(L, (V)= (V)= 1) (r +ik (v ~u (1)) 10, (%, & ¥)=-D(X, k. ¥);
X X X

-b(x, k, v)=1-L, (V)L (V)- 1)r @100(},3) (4. 39¢C)
X X

and obtain the function @ (x I 3)
Step 4. Calculate the inverse Fourier transform $ (x v)
@0(},3):(2%)"pf@0(},},3)eXp(ikaS)dpk (4. 39d)

Completing these four steps, we obtain an explicit
expression for the zeroth-order term of parametrics

. > >
expansion @O(X,v) (4. 37).

As we have already mentioned above, equation
(4.39a) of Step 1 has an unique solution in imLé(ﬁ).
X

Equation (4.39c) of sStep 3 has +the same property.
Indeed, for every %, the RHS —D(},I;g) is orthogonal to

imﬂ;(ﬁ), and thus the existence and the uniqueness of

X A
formal solution QO(X,},g) follows again from the

Fredholm alternative.
Thus, in Step 3, we obtain the unique solution
Q (X } +) For every }, this is a function which belongs

to imL, (V). Accounting that f0(§,3)=f0(u(}),3(}),T(}),?)
X
expose no explicit dependency on }, we see that the

inverse Fourier transform of Step 4 gives
> > . >
QO(X,V)ElmLé(V).
X

Equations (4.39a)-(4.39d) provide us with the
scheme of constructing the =zeroth-order term of
parametrics expansion. Finishing this section, we will
outline briefly the way to calculate the first-order

term of this expansion
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1

Coﬁsider a formailoperator R=(1-48) . Operatof-E

is defined by a formal series:
' ¢4]
R= Y (48" (4. 40)
m=0 |
In every term of this series, we want to place operators

A4 left to operétors B. In order to do this, we have to
commutate B with 4 from left to right. The commutation
of every pair BA yields the elementary transform
BA — AB - |[A, B]

where [A, B]|=AB-BA. Extracting the +terms with no
commutators [4, B] and with a single commutator [4, B}, we
arrive at the following representation:

R=R0+R1+(terms with more than two brackets) (4. 412)

Here
0o
Ry= % A5 (4. 41b)
=0
® g . . . .
R=-3% N ia" 4, Byt gt AT (4. 41¢C)
m=2 i=2

Operator R, (4. 41b)y 1is the =zeroth-order term of
parametrics expansion derived above. Operator R, (the
first-order term of parametrics expansion) can be

represented as follows:

[+4) [0.4] . . [+
Ri== 1 4”14, B)( Y atBN B =- 3, wd"cBE”, C=[4, BIR, (4. 41d)
m=1 1=0 m=1 :

This expression can be considered as an ansatz for the
formal series (4.40), and it gives the most convenient
way to calculate R,. Its structure is similar to that of
R, Continuing in this manner, we can derive the
second-order term R, etc. WwWe will not discuss these
questions in this paper.

In the next section we will consider in a more

detail the first-order term of parametrics expansion.

4.3 Finite-Dimensional  Approximations to Integral

Equations
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© Dealing further only with the zeroth-order term of
parametrics expanSion' (4.38), we have to solve tﬁ@
- limear in{egral equations, (4.39a) and (4. 39c). These
equations satisfy the Fredholm alternative, and thus
they have unique solutiohs. The problem we face here is
exactly of the same level of complexity as that of the
Chapman-Enskog method [1]. The usual approach is to
replace integral operators with some appropriate
finite-dimensional operators. '
First we will recall standard objectives of finite-

dimensional approximations, considering equation

(4. 39a). Let p.(},ﬁ), where 7=1,2,..., be a basis in

. > 1 . e . -> .

imL (V). Every function @(x,vysimL, (v) might be
X X

represented in this basis as:

co

s 4 -2 2> > > > > <> >
P(x, vy= ), a;()p (X vy a(O)=(Q(x, V), p(x,v)), (4.42)
I=1 X

Equation ({4.39a) 1is equivalent to an infinite set of
linear algebraic equations with respect to unknowns

ai(X):

[

my (X)a (X)=d  (X), k=1,2,... (4. 43)

i=1

Here

> > > oy > >
mkl(x):(pk(x’ V)s A].OC(X, V)pl'(xx V))_},

> 5> > > >
dk(X)=—(Pk(X,V),D(X,V))} (4. 44)

For a finite-dimensional approximation of equation
(4. 43) we use a projection onto a finite number of basis

elements pi(},g),.i=il,...,iﬂ. Then, instead of (4. 42),
we search for the function Q.. :
fin
I
> > > > >
Ppin (X, V)= ElaiS(X)pis(x,V) (4. 45a)

Infinite set of equations (4.43) is replaced with a
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finite set of lineér a1gebraic equations with respect to

1

S
a. (x), where s=1,...,m
s

0 .
]glmisil(}})aif(?):dis(}?), s=1,....n (4. 45b)

There are no a priori restrictions upon the choice
of the basis, as well as upon the choice of 1its
finite~dimensional approximations. In this paper we use
the standard basis of unreducible Hermit tensors (see,
for example, [2,4]). The simplest appropriate version of
a finite-dimensional approximation occurs if the finite

set of Hermit tensors i1is chosen as:

> > > > 2 > 3> 5
Prp(X, vI=C (X, V)(cT(X, v)=3), k=1, 2,3;

> > > > > > 1 2 > > ..
pl'-i(X’ V)=Ci(X, V)C.]-(X, V)_gallc (X$ V)1 1, _?:17 23 3-:
> > =12 > A K > 1/2 4 46
Co (X V=V (X)) (V =U, (X)), Vo (X)=(2k T(x)/@) (4. )
It is important to stress here that “rgood-

properties of orthogonality of Hermit tensors, as well
as of other similar polynomial systems in BE theory,
have the local in x character, 1i.e. when these functions
are treated as polynomials in 2(},3) rather than
polynomials in v. For example, functions pk(},g) and
pif(}’;) (4. 46) are orthogonal din the sense of the

scalar product (" "),
X
> >

2 > >
3> > > 3 - (x, V > >
(P i py ;7)) ofe YT p (R ypy (x Tyd e (R, V=0
Oon contrary, functions pk(},ﬁ) and pij(},g) are not
orthogonal neither in the sense of the scalar product

(*, *),, nor in‘the sense of the scalar product (" ),

¥ X
if y#x. This distinction is important for constructing
the parametrics expansion. Further, we will omit the
dependencies on ¥ and v in the dimensionless velocity

ci(},ﬁ) (4. 46) if no misunderstanding might occur.
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In this paper we will consider the <case of
one—~dimensional in x eguations. We assume that:

It

o | R |
uy=0, T(X)=T(X,), #(X)=0(X ) (4.47)

_.-) .
bo(X)=u(x,), U,=u,

wve write «x instead of X below. Finite-dimensional

approximation (4.46) requires only two functions:

Py (X, VI=Co(X, P)=2c7 (£, 9), P, (X, V)=¢ (X, ¥) (¢ (x, V)=3),
c (x V) V (X)(V -u{x)), cz 3(x v) V (x)vz 3 (4. 48)

we now will make a step-by-step calculation of the
zeroth-order term of parametrics expansion, 1in the
one—dimensional case, for the finite-dimensional
approximation (4. 48).
Step 1. Calculation of @10C(X v) from cquafloﬂ (4. 39a).
we search for the function wloc(x v) in the

approximation (4. 48) as:

> 2 1.2 3
wloc(x,v)=aloc(x)(cl—gc )+b10c(x)cl(cz—5) (4. 49)

Finite-dimensional approximation (4.45b) of integral

equation (4.39a) in the basis (4. 48) yields;

My (X)) o (X)Hmy  (X)Dy o (X)=0y g (X);

m43(x)aloc(x)+m44(x)bloc(x):ﬁloc(x); (4. 50)

Notations used are:
11 Su
9 By

Vo (X)
_ T 8lnn , 11 alnT].
m34(X)_m43(X)_ 3 [ + ;

27 Bu

oy (X)=0(X YAy (X)+7g m, (X)=0(X)A (X)+=p Fo

Ox T2 T Ox

2 3 >
_ 1 - (X, V) > > > > 3 > >
Ay 4 (0= %3,2Ie P3, (6 VL, (VIPy 4 (X, )47 (5, 7)>0

ad 5 d
alOC(X)=—% 5%; B1OC(X)='_§3&_ Vo (X) é;T (4.51)

Parameters h3(x) and K4(x) are easily expressed via
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Enskog 1ntegral brackets, and they are calculated in [1]
for a wide class of molecular models.
SOIV1ng ~equation (4.50), we obtain coefficients
(x) in the expression (4. 49):
Moc™ o PlocX)
210c” Z(x,0) ' Tloc Z(x,0Y¥

21 5 (X) and’bloc

P
Z(X,0)=m33(x)m44(x)—m34(x);
Aloc(x)zaloc(X)m44(x)-ﬁlocfx)m34(X);

Bloc (¥1=B o (X733 (X)=0y o0 (X33 4 (X;

2 8u 27 Qg] 5 ZﬁlnT[@lnﬂ 11 5lnT]
e ax[ﬂK *12¥r6x Tox T2 ox

474 Bx
5 2
11 Bu 27 8u) “r(8lnm. 11 81nT
[Hh3+ 9 ax](nh4+ 4 aX]‘ 9 [ dx T 2 Ox

Sy Q;gz[ ,11 Bu 6u[6lnﬂ+ll 31nT)
T Bx 3 Ox 2 Ox |
by oe= (4.52)

2
11 Gu 27 60 Yr{8lnm 11 81lnT
[”K3+ 9 ax)[?“4+ $ ax]‘ 9 [ dx V2 6x |
These expressions complete Step 1.
Step 2. calculation of Fourier transform of $IOC(X,3)

41 0c™

and its expression in the local basis.
In this step we make two operations:

i)} The Fourier transformation of the function @loc (X, 3):
300
Qoo (6 V)= [ exp(-iky)@ (¥, P)dy (4.53)

-0
11) The representatlon of wloc(k V) in the local basis
{p, (X, V),---,P4(X V)}
-> > 2 -» 3
DO(X,V)=1, Pl(X,V)=CI(X,V), Po (X, V)=C (X, V)5, (4. 54)

-> 2 > 12 > > > 2 > 5
p3(X!V)=Cl(XsV)—3C. (X:V): p4(X,V)-'——CI(X,V)(C (st)_i)

Operation (1i) 1s necessary for completing Step 3
because there we deal W1th X~ dependcnt operators.
Obviously, the function @10c(k'v) (4. 53) is a
finite-order polynomial in v, and thus the operation

(11) 1is exact.
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We obtain in (i1):

11T

- o ) N '
By o (X & VIZP O K E(X, V)= B (6 K)p (V) (4. 55)

0

Here
; v U@, (kY pa(x, VY)Y, (4 56)
bl-(X,k):(,Dl-(X,V),pl-(X,V))X { loc ‘% ’pl ) ¥ .

introduce notations:

) u(x)~u(y)

=800, )= CTN L Y =5 (4. 57)

Coefficients ai(x,k) (4. 56) have the following explicit

form:
+&a

~ . 1
hi(x, ky= [ exp(—1ky)yh (x, y)dy: hy(x y)=Z (¥, 0)8,(5F)

~C0

5 2 2 2
£, (X, ¥)=B1 o (NP Y8 =1)) + 5870 (DT
2 4 )

g, (X ¥)=B] o (N BT3B -1y + Ay (I

5 2
gz()‘r’ .Y)::T_;;—BIOC(Y)P@ ‘T;
2
8400 ¥)=By (28T + A (1)
g4(x,y)msloc(y)ﬁ3_ (4. 58)
_ _ .
Here Z(y, 0), Bloc(y) and Aloc(y) are functions define
in (4. 52)
Step 3. <cCalculation of the Ffunction éo(x,k,ﬁ) from
equation (4.39c).
Linear 1integral equation (4.39c) has character

similar to that of equation (4. 39%a). We search for the
function $O(X,k,§) in the basis (4. 48) as:

~ > ~ -3 -~ > -
@O(X,k,V)=3O(X,k)P3(X,V)+bo(fsk)P4(X,V) (4.59)

Finite-dimensional approximation of the integral
equation (4.39c) 1n +the basis (4.48) yields the

Eat

following equations for unknowns ao(x,k) and bo(x,k)
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P PR 1. ~ e N
m33(x)30(x,k)f{m34(x)+31gvT(;)]bo(x,k)_qﬂ(xrk),

Lo, A 3 |
_ [m43(x)+31va(x)}aO(X,k)+m44(x)b0(x,k)_ﬁo(x,k) (4. 60)
Notations used here are:

ao(x,kj=m33(x)b3(x,k)+m34(x)b4(x,k)+sa(x,k);

-y

ﬁo(x,k)=m43(x)b3(x,k)+m44(x)b4(x,k)+55(x,k);

400

S X, k)=
Sa, g6 £)=

EXP(-14kY)Sy ﬁ(X,Y)dy;

1 81 GlnT a
S0 1=2v, 00 [FBR2428 M b (x, 342 S, (x )42k, (X, 7))

g 8
s =29, 00 (T3, (x, )+ 258 (3, (x, yy+hy (X, 7)) )4
d

Solving equations (4.60), we obtain functions EO(X,k)
and bo(x,k) in (4. 59):

. . .
Oy (X, kym  (x)=B (X, k) (my (X)) +51kv (X))

Z(x,giva(x))

) Bo (X, k), (X)=0 (x, k) (my , (x)+31kv (X))
b_(x, k)= : (4. 62)

0 1.
Z(X,S;va(X))
Here
1. kzvi(x) »
Z(X,—lkVT(X)) = Z(X, 0) + 5 + glva(x)m34(X) =
2 2.2
kv _(x)
11 8u 27 Q_J VT(X)[alnﬂ 11 61nT]2 T
=[”K3+ 9 ax}[ﬁh4+ 4 3x)” T 9 ox T2 ox J * 9 *
2., 2 Ginn | 11 61nT]
+91kVT(X)(*5;~ * Ty Tay (4. 63)

Step 4. calculation of the imnverse Fourier transform of
the function wo(x,k,g).
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- The inverse - Fourier transform of the function
@b(x,k,ﬁ) (4.59) yields: '

_ > > ' -3
y(x, vi=a (X)py (X, V)+b,(X)p, (X, V) (4. 64)
Here :
e A |
a,(X)=5q {m exp(ikx)ao(x,k)dk,
1 B :
b, (X)=573 {w exp(Zkx)b,(x, k)dk (4. 65)

Taking into account expressions (4. 52), (4.61)-(4. 63),
and (4. 58), we obtain the explicit expression for the
finite-dimensional approximation of the zeroth-order

term of parameirics expansion (4. 64):

p ¥R -1, 1
ay(X)=5 {mdyfmdk exp(ik(x-y))Z (X, 1AV (X))*

—%ikvr(x)[m34(x)b3(x,y)+m44(X)b4(X,Y)+SB(X,Y)]};

p PR -1, 1
by (X)=3g {mdy{mdk eXp(Ik(x-y))Z ~ (X, 3LkvV(X))*

X{Z(x,0)b4(x,y)+[sﬁ(x,y)m33(X)—Sa(X,y)m34(X)]—

1.

4. 4 Hydrodynamic Equations

Now we will discuss briefly the utility of results
obtained in Section 4.3 for hydrodynamics.
- . i
The <correction to LM functions fo(n,u,T) (4. 1)

obtained has the form:

fl(n,E,T)=fO(n,3,T)(1+w0(n,3,T)) (4. 67)
Here the function ®0(ﬂ,3,73 is given explicitly with
EXPressions (4. 64)—(4. 66).
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The usual form of closed hydrodynamic equations for
n, 3, and T, whére the tracelﬁss tension tensor Gik and
the heat flux'vgctor q; are expressed via hydrodynamic
variables, will be obtained if we substitute the
function (4. 67) into balance equations of the density,
of the momentum, and of the energy. For LM
approximation, these balance equations result in Euler
equation of the nonviscid liquid (i.e. Gik(fO)EO’ and
qi(fo)EO). For the correction f1 (4. 67), we obtain the-
following expressions of O=GXX(f&) and q=qX(f1) (all
other components are equal to zeroc im the one-
dimensional situation under  consideration):

1 3
0_3330, qu4ﬂb0 (4. 68)
Here a and bo are given by expression (4. 66).

From the geometrical viewpoint of Section 2,
hydrodynamic equations with the tension tensor and the
heat flux vector (4. 68) have the following
interpretation: we take the corrected manifold ﬁl which
consists of functions fl (4. 67y, and we project the BE
vectors Ju(f&) onto tangent spaces Tfl using the LM
projecior Pr (4. 6a).

0
Although a detailed 1investigation of these

hydrodynamic equations is a subject of a special study
and 1t 1is not the goal of this paper, some points should
be mentioned.

Nonlocality. Expressions (4. 66) expose a nonlocal

spatial dependency, and, . hence, the <corresponding
hydredynamic equations are nonlocal. This nonlocality
appears through two contributions. The first of these
contributions might be called a ffequeﬂcywreSponse
contribution, and it comes through explicit non-
polynomial £-dependency of integrands in (4. 66). This
latter dependency has the form:
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9
| , ‘
—® C(X, Y)+IKD(X, Y)+KPE(X, ¥)

gxp(ik(x—y)jdk 2(4.69)

Integration' over % in (4.69) can be completcd via
axillary functions.

The second- nonlocal contribution might be called
correlative, and it is due to relationships via
(u(x)-u(y)) (the difference of flow velocities in points
x and y) and via T(x)/T(y) (the ratio of temperatures in

points x and y).
| Acoustic spectra. The purely frequency-response
contribution to hydrodynamic equations 1is relevant to
small perturbations of equilibria. The tension tensor O
and the heat flux g (4. 68) are:

3 By’ .2 8°TY.
O = —(2/3)m,T ,R [28 58 - 3€ o ]
’ 2 ’
3/2 ar _. o2 87w
g = -(5/4 72" “n R [38 ~(8/5)€ __.*] (4.70)
0 0 3t ot 2
Here
2
R = [1 - (2/5)82-5—5]"1 (4. 71)
)3

In (4. 70), we have expressed parameters K3 and K4 via
the viscosity coefficient b of the Chapman-Enskog method
[1] (it is easy to see from (4.51) that K3=K4K bl for
spherically symmetric models of a collision), and we
have used the following notations: 7, and n, are the

0
equilibrium temperature and density, §=(ﬂTé/2)—lnﬂx is
the dimensionless coordinate, N=W(T ) /T, U’=T51/26U,

T’:GT/TO, H'=6H/ﬂo, and Su, 87, On are the deviations of
the flux velocity, of the temperature and of the density
from their equilibrium values wu=0, r=T, and n=n,. We
also use the system of units with szmzl.

In the 1linear «case, the parametrics expansion
degenerates, and its zeroth-order term (4. 39d) gives the

solution of equation (4. 24).
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~4 4 ~25/28 | 1 Y43 Rew

FI1G. 1

The dispersion relationship for the approximation
(4. 70) is:

W3 (23k% 60yt w2kt /0Py 4 (8k8/5D% Y ywe(5k* 2Dy =0;

1'9=1+(4/5)1(2 (4. 72)
Here k& is the wave vector. Acoustic dispersion curves
Wck) for approximation (4.70) are depicted in FIG. 1
(solid 1line). They are compared with the second (the
Burnett) approximation of the Chapman-Enskog expansion



P .

METHOD OF INVARIANT MANIFOLDS 625

{3] (dashed line) and with the regularization of the

Burnett approximation via partial summing of the.
Chapman-Enskog expan31on [5 7] (punctuated dashed line).
Arrows indicate an increase of £,

Acoustic spectra given by dispersion relationship
(4. 72) contains no nonphysical short-wave instability
characteristic to the Burnett approximation. The
regularization of the Burmett approximation [5, 7] has
the same feature. Both of these approximations predict a
limit of the decrement ReWw for short waves.

Nonlinearity.. Nonlinear dependency on g%, on 5%;T,

and on aé;” appears already in the local approximation

wloc (4. 52). In order to outline some peculiarities of

this nonlinearity, we represent the zeroth-order term of

(4. 52) 1into powers of 6‘%?? and

the expansion of a

Glnn loc
“Bx -
2 Ou 11 Bu 8lnT OBlnn
a1 6c= ~3 By [nh +5 6x] + O[ 5> By J (4. 73a)

This expression describes the asymptotic of the rpurely
nonlinear” contribution to the tension tensor O (4. 68)
for a strong divergency of a flow. The account of

nonlocality yields instead of (4. 70a):

+00 400 -
1 11 Bu

s, 1
a,(X)=-7g f dyf dk exp(ik(x- y))§ 6?[ h3+w3 W}J x
-"‘[[ﬂ?\ 1 a—"][nh 21 -a—”]+k VT]_l [?& 1L QL’}[ A 427 @.]
37 9 OxJUT4T 4 0x)7 9 a3ty Bx )\t Ty ax)t
Sul)d
Jri[ﬂ;k > UJ@? YT 2 (ux)- u(y)) —“lka (u(x)- U(Y))] +

9 4 dy
‘8lnr Blnn
+ O[ 5 “Bx ] (4. 74b)

Both expressions, (4.74a) and (4. 74b) become singular

when

Qy- 5U* 9HK3
5y > 3y = ~1I (4. 75)
Su

Hence, the tension tensor (4. 69) becomes infinite if By
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tends to g in éhy point y. In other words, the flow

becomes 1nf1n1tel viscid when g% approaches the
on - e |
negative value - 7 This infinite viscosity threshold

prevents a transfer of the flow into nonphysical region

of negative v1scosxty if 5; > %% because of the infini-

tely strong dumping at g% . This peculiarity was

detected in [6, 7] as a result of partial summing of the
Chapman-Enskog expansion. In particular, partial summing
for the simplest nonlinear situation [6] yields the
following expression for the tension tensor O:

C a2 N1 2
. i D 26 61] 26 8 ] e .
0=01pt01 1R’ GIR=_3[1" 3¢ 2] (S"E' 8 s 8 =T '
8¢ 8¢
142
28 7.8u’ 8 u
SN [1+ e3¢ ] prs; (4. 76)

Notations here follow (4.70) and (4.71). Expression
(4. 76) might be considered as a "rough draft" of the
"full" tension tensor defined by a, (4. 66). It accounts
both the frequency-response and the nonlinear
contributions (UIR and OiIR’ respectively) in a simple
form of a sum However, the superposition of these
contributions in (4. 66) is more complicated. Moreover,
the explicit correlative nonlocality of expression
(4. 66) was mnever detected neither in [6], nor in
numerous examples of partial summing [7].

Nevertheless, approximation (4.76) contains the
peculiarity of viscosity similar to that inm (4. 73a) and
(4. 73b). In dimensionless variables and &=1, expression
(4. 76) predicts the dinfinite threshold at wvelocity
divergency equal to =~(3/7), rather than -(9/11) in
(4. 73a) and (4. 73b). Viscosity tends to =zero as the
divergency tends to positive infinity in both approxima-
tions. Physical interpretation of these phenomena was
given in [6]: large positive values of g% means that the
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FIG. 2

gas diverges rapidly, and the flow becomes nonviscid
because the particles retard to exchange their momentum.
on contrary, its negative values (such as -(3/7) for
(4.76) and -(9/11) for (4.73a) and (4.73b)) describe a
strong compression of the flow. Strong deceleration
results in "solid fluid® limit with an dinfinite
viscosity.

FIG. 2 compares the qualitative character of

dimensionless viscosities DDy where DNS is the
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Navier-Stokes viscosity, for approximation (4. 73a)
(solid line), for partial summing (4. 76) (puhctﬂated
dasheﬂ line), and for the Burnett approx1mat10n [6]
(dashed line). The latter changes the sign at a regular
point and, hence, nothing prevents the flow to tranmsfer
into the nonphyéical region.

Thus, hydrodynamic equations for approximation
(4. 67) are both nonlinear and nonlocal. This result is
not surprising, accounting the integro-differential
character of equatlon (4. 24).

It is important that no small paramcters were used
neither when we were deriving equation (4. 24) nor when
we were obtaining the correction (4. 67).

We stress once again that the problem of reduced
description (such as derivation of hydrodynamics) can be
posed and Iinvestigated without using small parameters.
This question was already discussed in Section 2. 5. Here
we will make some additiomal clarifications.

1t seems "natural® to introduce the usual parameter

1 where € is Knudsen number, in front of the

8 ]
collision integral in equation (4. 20), and to develop a
Taylor-type perturbation technique for this equation.
Representing @ in (4. 20) as a formal series
£4]
(= Z-8m+1@(m) (4. 77)
m=0
one can easily obtain a set of linear integral equations

with respect to unknown functions w(m):

fO(n,u,T) f (n, u T) f (1, u T) fo(n,u,T)
pt™) . LYy (4.78)
r o (1, u 7) fo(ﬂ,u,T)
Function » N and operator X S are defined
fo(nu,T) fo(n u,T)

in (4. 21).
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The system (4.78) 1is recurrently . solvable. In
particular,fihe correction Q(O) coincides with the fTirst
correction of the Chapmanaﬁhskog method [1]. The higher
order terms in expansion (4. 78) also have the form simi-
lar to that of the Chapman-Enskog method, i.e. they have
polynomial deﬁendency on spatial derivatives of =, 3,
and 7. However, it is preferable to avoid this approach
because of at least iwo reasons:

i) A truncation of the formal series (4. 77) at any
m>1 is not reliable. Even though the corrections m(m) do
not completely coincide with the corresponding terms of
the chapman-Enskog expansion, the experience of dealing
with the Burnett and the super-Burnett approximations
shows that they are "bad" when used directly. In parti-
cular, the Burnett and the super-Burnett corrections
result in a short-wave instability of equilibria [3] and
in "negative viscosity" regimes under high gradients.

ii) Examples given above show a certain similarity
between results obtained via Newton-type method of sol-
ving the invariance equation and parametrics expansion,
and those obtained via partial summing of Taylor-type
expansions (i. e. a method which treats the series (4. 77)
as a whole), especially in the highly nonequilibrium
regions. This similarity of a properly chosen method of
partial summing to the method of invariant manifold 1is
not random (see, for instance, {18] imn the case of KaAM-
theory). However, it is rather difficult to define the
notion "the proper choice", and thus "successful methods

of partial summing” are always of an ad hoc character.

5. CONCLUSIONS

we have considered the two main problems of reduced
description for dissipative systems: the problem of
thermodynamicity (Problem 1 of Sectionm 2.1) and the
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problem - of dynamic invariance (Problem 2 of sSection
2(1). Maln results in this dlrectlon are:

1) Problem 1 is solved comﬁletely in Section 2. 2
There is no other universal way (1. e independent of the
particular choice of collision integral) to construct
thermodynamic barametefization for an arbitrary
manifold.

iiy Iterative Newton-type methods to correct the
dynamic noninvariance are developed in Section 2.3 1in
.order to solve Problem 2.

These two results are combined into the method of
invariant manifold. The method developed requires no
special choice of initial approximation, as well as
small parameters. Thus, it provides a common approach to
such different problems as the obtaining of hydro-
dynamics, shock waves, 1initial Jlayers, etc. Specificity
of each problem is to be accounted via a relevant choice
of 1initial manifold, while the procedure of thermo-
dynamic parameterization and of obtaining corrections 1is
uniform in its essence.

As applied to the problem of derivation of hydro-
dynamics from the Boltzmann equation (Sectionm 4), the
method of invariant manifold, together with the para-
metrics expansion, eliminates the necessity of using
Knudsen number expansions. New nonlocal and nonlinear
hydrodynamic equations derived in Sections 4.3 and 4. 4
contain no short-wave instability and negative viscosity
characteristic to the Chapman-Enskog method.

The question about the convergency of successive
approximations 1s not difficult for finite-dimensional
dissipative systems. For the Boltzmann equation this
guestion remains open. The complexity of this problem is
stressed by the fact that the global existence and
uniqueness of the solution is a particular case of this

problem.
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