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Abstract 

The paper intends to fill the gap of analytic approximate methods for non-linear space- 
independent dissipative systems equipped with the entropy functional. The key point of the 
analysis is an upper limiting state in the beginning of the relaxation. Extremal properties of this 
state are described and explicit estimations are derived. This limiting state is used to construct 
explicit approximations of the phase trajectories. Special attention is paid to accomplish positiv- 
ity, smoothness and the entropy growth along the approximate trajectories. The method is tested 
for the space-independent Boltzmann equation with various collisional mechanisms. 

1. Introduction 

When a relaxing system is considered, it is common to distinguish between the 
three subsequent regimes on the way from an initial non-equilibrium state f 0 ( F )  to the 

final equilibrium state f ° ( F ) ,  where F is the phase variable: the early-time relaxation 
immediately after the system leaves the initial state f0 ,  the intermediate regime, and the 
final regression to the equilibrium state f0 .  This model picture is only approximate and 
it is most relevant to gases. The early-time relaxation occurs in a few first collisions 
of  the molecules and can be singled out from the whole relaxational process to be 
investigated separately [1]. 

Considering the beginning of  a relaxation, we may expect that it is dominated by a 
rate of  processes in the initial state. In the case of  a gas, in particular, this rate Q0 is 
given by a collision integral Q(f) computed in the state f 0 : Q 0  = Q(fo). The latter 
expression can be regarded as a known function of  the phase variable, Q0(F). In other 
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words our expectation is that states which the systems pass through in the beginning 

are close to those on a ray, f ( F , a ) :  

f ( F , a )  = f0 (F)  + aO0(F),  (1) 

where a >~ 0 is a scalar variable (throughout the paper we use dimensionless variables). 
It is clear that such an approximation can be valid only if a "is not too large". On 

the other hand, nothing tells us ultimately that a must be "strictly infinitesimal" to get 
at least a moderate approximation. In general, this consideration can be relevant if the 

parameter a in Eq. (1) does not exceed a certain upper limit a*. 

In this paper we give an answer to the following question: what is the upper limiting 

state f *  the system cannot overcome when driven with the initial rate Q0? As long as 
we can consider Q0 as the dominant direction in the early-time relaxation, the answer 

amounts to an upper estimate of the parameter a in Eq. (1), and thus the limiting state 

f* is 

f * ( F )  : f ( I? ,a*)  = f 0 ( F ) +  a*Qo(['), (2) 

where the value a* is the subject of the analysis to be performed. 

Our approach will be based on the following consideration. Denote by S ( f )  the 

entropy of a state f ( F )  and by S(a) its value in the state f ( P , a )  of Eq. (1). A 

state f ( F , d )  can be regarded accessible from the initial state f ( F , 0 )  = f0 (F)  in 

the course of the Q0-dominated dynamics, if and only if the function S(a) increases 

with an increase in the variable a from 0 to d .  The upper limiting value a* is thus 
characterized by the following two properties: 

1. S(a) increases as a increases from 0 to a*. 

2. S(a) decreases as a overcomes a*. 
Assuming the usual convexity properties of  the entropy, we conclude that the state 

f ( F ,  a*) with these properties is unique. 

The paper is organized as follows. In Section 2, we derive an equation for the 

limiting state f ( F ,  a*) in two ways: firstly, as a direct conjecture of the two properties 
just mentioned and, secondly, as an equilibrium state of an appropriately chosen model 

of the Q0-dominated relaxation. Next we introduce a method to obtain the explicit 

estimations of the function f(I?, a*) (details are given in Appendix A). With this, we 
get the answer to the question posed above. 

The derivation of the state f ( F ,  a*) plays the key role in Section 3. There we aim at 

constructing explicit approximations to phase trajectories of a given space-independent 

kinetic equation: namely, we construct a function f ( F ,  a), where the parameter a spans 
a segment [0, 1], and which fits the following conditions: 

1. f ( F , 0 )  = f0(F) ;  
2. f ( r ,  1) = f ° ( I ' ) ;  
3. f ( F , a )  is a non-negative function of F for each a; 

4. C(a) = C ( f ( a ) )  = const, where C ( f )  are linear conserved quantities; 
5. S(a) = S ( f ( a ) )  is a monotonically increasing function of a; 

6. Of(F,a)/Sala=o : kQ0(F), where k > 0. 
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With this, f (E ,  a) is thought of as a path from the initial state )Co to the equilibrium 
state fo (conditions 1 and 2), all states of the path make physical sense (condition 3), 
conserved quantities do not change, and the entropy monotonically increases along the 

path (conditions 4 and 5). Lastly, condition 6 requires the path to be tangent to the 
exact phase trajectory in their common initial state f0.  A function f ( L a )  with the 
properties 1-6 is, of  course, not unique but a construction of a definite example occurs 
to be a non-trivial task. Indeed, the major difficulty is that the tangency condition 6 is 
not directly compatible with the rest of the conditions. 

The simplest function with the properties 1-6, and which depends smoothly on a, is 
constructed explicitly in the Section 3 (details of the procedure are given in Appendix 
B). We also discuss the question of the time dependence of f (La( t ) ) .  In Section 
4, the method is applied to the space-independent non-linear Boltzmann equation for 
several collisional mechanisms. In particular, we compare our approximations with the 
known BKW-mode [2, 3] for the Maxwellian molecules, and with the solutions to the 

two-dimensional very hard particles model (VHP) [4, 5]. Results are discussed in the 
Section 5. 

Prior to proceeding further, it is worthwhile to give here a brief comment on the 

status of the approximate phase trajectories considered in Section 3. It is well known 
that the space-independent problem for dissipative kinetic equations is one of the most 
developed branches of kinetic theory, primarily, with respect to existence and unique- 
ness theorems [6-8], as well as to the exact treatment of specific models [9, 10]. On the 
other hand, there exists a gap of approximate analytic methods in this problem. This 
is not surprising because most of the techniques of the kinetic theory [1] are based 
on a small parameter expansion, and this is not the case of the space-independent 
relaxation. Our consideration intends to make the first step to fill this gap. Indeed, as 
the examples demonstrate, the smooth approximations f ( a , F )  of Section 3 provide a 
reasonable (and simple) approximation to the exact trajectory. 

Moreover, these functions serve for the initial approximation in an iterative method 
of constructing the exact trajectories for the dissipative systems [11] (this method, 
in turn, is based on a more general consideration of the paper [12]). We will give 
additional comments on this iterative method in Section 5 and provide an illustration 
of the correction in Section 4, leaving, however, a detailed discussion for a further 
publication. 

2. Extremai properties of  the limiting state 

Let us first consider the equation for the limiting state f ( L a * )  (Eq. (2)) in an 
informal way. The two features of the function f ( E , a * )  indicated above tell us that 
it is a state of the entropy maximum on the ray f ( E , a )  (Eq. (1)). The extremum 
condition in this state reads 

/ S f ( E , a )  = O, (3) 6S(f)  dF 
• 0a " ~ Ij=r~v~*) 
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where 6S/6f denotes a (functional) derivative of the entropy, taken in the state f ( F ,  a* ). 

For a particularly interesting case of SB(f) = - f  f ( F ) I n  f ( F ) d F  (the Boltzmann en- 
tropy) and f Q( f )dF = 0 (conservation of the number of particles), Eq. (3) gives: 

f Q0(r)ln { f 0 ( r )  + a*Q0(F)} dF = 0.  (4) 

To avoid duplication of formulas and in view of the examples considered below, we 
will restrict our consideration to the latter case. A (unique) positive solution to Eq. (4) 
is the value a* which gives the desired upper estimate. 

To derive Eq. (4) more formally, an explicit presentation is required for a model 
dynamics dominated by Q0. Let us introduce a partition of the phase space into two 
domains, F+ and F_,  in such a way that the function Q0(F) is positive on F+ and 

negative on F_,  and so Q0(F) = Q~-(F) -Qo(F) ,  where both the functions Q~-(F) and 
Qo(F)  are positive and concentrated on F+ and r _ ,  respectively 1 . Let us consider 
the following relaxational equation: 

Otf(F,t) = kl(Q+(F) - Qo (F)) (w-( f )  - w+(f)) , (5) 

where 

w ( f ) =  exp 

w+(f ) - -  exp 

/Qo(r)lnf(F't)dF) ' 
r_ 

/ O~-(r) in f(F, t)dr), 
\F+ 

(6) 

and kl > 0 is an arbitrary constant. When supplied with the initial condition f ( F ,  0) = 
f0(P) ,  Eq. (5) has a formal solution of the form 

f ( r , t )  = fo(r) + a(t)Qo(F), (7) 

provided that a(t) is a solution to the ordinary differential equation 

d a  
- -  z kl(w-(a) - w+(a)) 
dt 

with the initial condition a(0) = 0. 
The solution (7) describes a relaxation from the initial state f0  to an equilibrium 

state f* ;  as; t tends to infinity. 2 The entropy SB increases monotonically along this 

I For the Boltzmann equation, this partition should not be confused with the natural representation of the 
collision integral as f w(v ' lv ' lv lv) ( f ' f '  l - - f f l ) a v ' , d v ' a v , ,  see Section 4. 
2 The equilibrium state f *  of  the model kinetic equation (5) is not the global equilibrium fo .  
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solution up to the value S~ = SB( f* )  in the state f* .  Substituting f *  = f0  + a* Q0 
into the RHS of Eq.(5), we obtain an equation for the equilibrium state f *  in the 
form 

w - ( a * ) = w + ( a * ) ,  (8) 

which is exactly Eq. (4). Note that the parameter kl in Eq. (5) does not affect the 
final result (4) since it is responsible only for the speed of the approach to the equili- 

brium state f *  due to the dynamics (5) but not for the location of this state on the 
ray (1). 

Let us discuss the idea behind the model dynamics presented by Eq. (5). As we 
disregard any changes of Q in the beginning of the relaxation, the function Q0(F) 
represents a distinguished direction of relaxation in a space of states. Partition used 
corresponds then to a distinction of the 9ain (F+) and of the loss (F_)  of the phase 
density, while the factors w + and w in Eq. (6), 

{ 
give the rates of the gain and the loss in the current state f ,  respectively. Eq. (5) 
accounts for these processes in the familiar "gain minus loss" form, while the state f *  
corresponds to the balance of the gain and the loss (Eq. (8)). One can also observe a 
formal analogy of the structure of Eq. (5) to that of the so-called Marcelin-De Donder 
equations of chemical kinetics [13, 14]. 

Thus, the limiting state f *  = f o  ÷ a*Qo is described as the equilibrium state of the 
relaxational equation (5), and it is given by the solution to Eq. (4). Note that the 
parameter a* is correctly defined by Eq. (4), independently of the partition introduced 
in Eq. (5). The existence of the model relaxational equation (5) guarantees that f *  is 
the physical state represented by a non-negative distribution function. 

To complete the analysis, we have to learn to solve the one-dimensional non-linear 
equation (4). In general, a method of successive approximation is required to get 
the solution a* as a limit of the sequence a~,a~ .. . . .  Care should be taken to get 
all the approximations a~' not greater than the unknown exact value a*, since the 
states f ( a , F )  with a<~a* are only relevant. Moreover, what one actually needs in 
computations is some definite approximation a~' ~<a*. In Appendix A, a relevant method 
is developed which is based on the partition of Q0 introduced above. In particular, the 
first approximate a~' reads 

1 - exp{-a0/q)  (9) 
a I =- , ~ + fl exp{--~o/q} 
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where q, ao, ~, and fl are numerical coefficients: 

ao = - f Qo(P) In f0(r)ar, 

F+ P_ 
Qo(U ) (10) 

= sup 
rcr_ fo (F)  

fl = [ (Q+(I?)) 2 

qfo(F) dF. 
t l  

F+ 

In these expressions, a0 is the entropy production in the initial state, q is the normaliz- 

ing factor, and ~ and fl reflect the maximal loss and the total gain of the phase density 
in the initial state, respectively. Finiteness of the parameters collected in (10) gives a 

restriction on the initial state f0  for the estimate (9) to be applied. 

3. Approximate phase trajectories 

In this section we will demonstrate how one can utilize the states f *  of Eq. (2) in 
the problem of constructing the approximate phase trajectories of the space-independent 
relaxational equations: 

Otf(F,t) = Q( f )  . (11) 

Here Q(f )  is a kinetic operator. We assume that Eq . ( l l )  describes a relaxation to 
the equilibrium state f ° (F ) ,  and the entropy SB(f) increases monotonically along the 
solutions. Further, let el(F) . . . . .  ck(F) be the conserving quantities, i.e. f c iQ(f)dF = 
0. Then C i ( f )  = f c i f d F  conserves along a solution, and l n f ° ( F )  = Elk ai¢i (F) ,  

where  ai are some numbers. A standard example of Eq. (11 ) is the space-independent 
Boltzmann equation to be considered in Section 4. 

Let f ( F , t )  be the solution of Eq. (11) with the initial condition f ( F , 0 )  = f0(F).  
The phase trajectory of this solution can be represented as a function t iP ,  a), where 
a varies from 0 to 1. For each a, the function f ( F , a )  is a non-negative function of 
F, and 

f ( F ,  1) = f ° ( F ) ,  f i r ,  0) = f 0 ( F ) ,  

ci(P)f(F, a)dF : const, G f ( F ,  a)]a:0 oc Q0(F). (12) 

In other words, as a varies from 0 to 1, the states f ( F ,  a) follow the solution f ( F ,  t) 
as t varies from 0 to oo. Since the entropy increases with time for the solution f ( F ,  t), 
the function SB(a) = Ss(f(a))  is a monotonically increasing function of the variable 
a. This condition, as well as the conditions (12), should be met by any method of 
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constructing an approximation to the phase trajectory f ( F , a )  (see conditions 1-6 in 
the Introduction). 

The simplest approximation based on the function f*  of the preceeding section can 
be constructed as follows: 

(1 - 2a)f0(F)  + 2a f* (F)  for 0~<a~< ½, 
(13) 

I ~ < a ~ <  1 f ( F , a )  = 2(1 - a ) f * ( F )  + (2a - 1) f° (F)  for ~ . 

This approximation amounts to the two-step presentation of the relaxation from the 
initial state f0  to the equilibrium state f0  through the intermediate state f *  of (2). 

The first step (parameter a increases from 0 to ½) is the relaxation directed along Q0 
up to the state f *  in (2). The second step (parameter a increases from ½ to 1) is a 
linear relaxation from f*  towards the equilibrium state. The last step can be viewed 
as the phase trajectory of a solution to the equation 

Otf(P, t) = -k2 ( f (F ,  t) - f ° ( F ) ) ,  (14) 

with the initial condition f*  in (2). In kinetic theory, an equation of the form (14) is 
known as the BGK-model [15]. The entropy increase along the second step is due to 

the well-known properties of Eq. (14). 
Expression (13) demonstrates the advantage of using the state f *  for the purpose 

of approximating the phase trajectory: conditions (12) are obviously satisfied, and also 
we have no worry about the entropy increase. Thus, all conditions 1-6 mentioned in 
the Introduction are satisfied by the approximation (13) due to the features of the state 
f* .  To get explicit expressions, the estimate (9) can be used with no violations. 

i A disadvantage of the two-step approximation (13) is its non-smoothness at a = 2" 
This can be improved as follows: Let us consider a triangle T formed by the three 
states, f0 ,  f * ,  and f0,  i.e. a closed set of convex linear combinations of these func- 
tions 3. This object allows for a geometrical language to be used. A simple conjecture 
of the properties of the state f *  is that all the elements of the triangle T are non- 

negative functions, and if f belongs to T then C i ( f )  = Ci( fo) ,  where i = 1 . . . . .  k. 
Therefore, a better approximation to the phase trajectory can be constructed as a smooth 
curve inscribed into the triangle T in such a way that: 

1. it begins in the state f0  at a = 0; 
2. it is tangent to the side Lfof .  = { f l f  = a j f o  + a2f*, al >/0, a2~>0, 

0~<al  -[-a2~< 1} in the state f0;  
3. it ends in the equilibrium state f0  at a = 1. 

Notice that the approximation (13) corresponds to the path from fo  to f0  over the two 
sides of the triangle T: firstly, over the segment between f0  and f* ,  and, secondly, 
over the segment between f*  and fo.  

The simplest form of such a smooth curve reads 

f g ( F , a )  = f o  + (1 - a 2 ) { a g ( f  * - f o )  + f o  - f 0 } ,  (15) 

3 The state f belongs to T if f = al fo  + a2f* + a 3 f  °, where ai >10 and 0~<al + a2 + a3 ~< I. 
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where 9,0 < 9-.. < 1, is an unknown parameter to be determined in a way that 

the entropy Ss(a), calculated in the states (15), is an increasing function of a. An 
explicit sufficient method to estimate the value of parameter 9 in (15) is developed in 
Appendix B. 

Lastly, let us consider briefly a question of the time dependence of the approxima- 
tions f ( F ,  a). Clearly, this question is relevant as soon as one looks for the approximate 
phase trajectories directly, rather than integrating Eq. (11) with respect to time. 4 An 

answer assumes a dependence a(t) and requires an ordinary differential equation for a. 
Such an equation should be obtained upon substitution of the expression for f ( F , a )  
into the originating kinetic equation (11 ) and by a fimher projection operation. More 
specifically, the equation for a(t) has a form 

d t  " q~(F,a) dF = q~(F,a)Q(f(F,a))dF, (16) 

where integration with the function q~(F, a) establishes a projection operation. Usually, 
this is achieved by some moment projecting (tp is independent of a), but this choice is 
rather arbitrary. Another possibility is to choose the so-called thermodynamic projector 
[16]. Then Eq. (16) becomes the entropy balance equation along the path (15): 

da dSB(a) 
- aB(a), (17) 

dt da 

where S~(a) = - f f ( F ,  a) In f ( F ,  a)dF and aB(a) = -- f Q(f (F ,  a)) In f ( F ,  a)dF are 
the entropy and the entropy production in the states f ( F , a )  (Eq. (15)), respectively. 

A further consideration of Eq. (17) is beyond the scope of this paper. Nevertheless, 

let us consider an asymptotic of the dynamics (17) for the motion from f0  towards 
f* .  As above, we take f ( F , a ) =  (1 - a ) f o  + a f*.  Eq. (17) for this function gives 

1 
a(t)~-d-£t, a << 1, 

a ( t ) ~  a~ x/t, l - a < <  1, 
(a* )2Ko 

where cr~ is the entropy production in the state f *  and K0 = f (Q2/ fo)dF.  A slowing 
down at a final stage is due to the fact that dSs(a)/da ~ 0 as a -~ 1, and a~ > O. 

4. R e l a x a t i o n  o f  the B o l t z m a n n  g a s  

The direct and the simplest application of the approach is the space-independent 
Boltzmann equation. In what follows, F is the velocity v and f ( F )  is the one-body 

4 This question is typical of many different approximations used in the kinetic theory, cf. [12, 16]. 
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distribution function f ( v )  which obeys the equation: 

Otf(v,t) = Q ( f ) ,  (18) 

with Q ( f )  being the Boltzmann collision integral. 
As the first example we consider the following form of the collision integral Q: 

f dw i d fiT(g' Ii){f(v',t)f(w',t)- f ( v , t ) f ( w , t ) } ,  (19) Q ( f )  

where the function 7 depends solely on a scalar product of unit vectors !I = (v - w ) /  

Iv - wl and fi = (v' - w')/Iv - wl, while v' = ½(v+w+ 6 Iv -  wl), and w' = 21-(v+w - 
f i iv -  w I) (notations are standard and follow [9]). The Boltzmann equation (18), with 
the collision integral (19), corresponds to the model repelling potential proportional 
to the inverse fourth degree of distance (3D Maxwellian molecules, see e.g. [8]). The 
reason to consider this model here is that it has an exact solution, the famous BKW- 
mode discovered by Bobylev [2] and Krook and Wu [3]. The BKW-mode represents 

the following one-parametric set of the distribution functions f (c ,v) :  

1 
f ( c , v )  = ~ exp t - - - ~ -  ~ ((5- 3 c ) +  c ( c -  1)v2), (20) 

where the parameter c spans the segment [1, 5[; value c = 1 corresponds to the final 
Maxwell distribution f ° (v )=f (1 ,v )=(27z) -3n  exp{-v2/2}. As c decays from a given 

value co, where 1 < co < 5, to the value c -- 1, the functions f ( c , v )  of Eq. (20) 
describe the phasetrajectory of the BKW-mode (time dependence of c is unimportant 

in the present context, see e.g. [9]). 
Considering the states (20) as the initial states in the procedure described above, 

we can construct the upper limiting states, f * ( c , v ) =  f ( c , v ) +  a*(c)Q(c,v), for each 
allowed value of c. Firstly, we compute the collision integral (19) in the states (20) 
to get the functions Q(c,v): 

Q(c,v) = ~ ( c -  1) 2 t T  ) exp -- ( 1 5 -  lOcu 2 -I- C2(1)2)2) , (21) 

l f d f iT (k  6)(1-(!~ 6)2). where 2 is a constant: 2 = ~ • - 
Expression (21) suggests a simple structure of the velocity space partition into the 

domains V+(c) and V_(c) (corresponding to the domains Y+ introduced in Section 2); 
namely, for a given c, the function (21) is positive inside a sphere of radius v_(c )=  

V/c 1(5 - v / ~ )  and outside a larger sphere of radius v+(c) = V/c-l(5 + v ' ~ )  (both 
spheres are centered in v = 0), while it is negative inside a spheric layer between these 
spheres: 

V_(c) = {v I v (c) < I vl < v+}, 

v+(c) = {v I v_(c) > Ivl} u { ,  I Ivl > v+}.  (22) 
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The limiting states f* (c ,v )  are given by the following expression: 

1 ['2n'~ -3/2 { ~ _ }  
t,T) exp - 

)< ( 5 - 3 c + 1 5 a * ( c ) + ( c -  1 - lOa*(c))cv2 +a*(c)c2(v2)2), (23) 

where a*(c) is a solution of Eq. (4): 

/Q(c ,v ) ln ( f (c ,v )+a*(c)2Q(c 'v )  - 1 ) 2 j d v = 0 "  (24) 

Accounting for the partition (22), all the parameters (10) required for the explicit 

evaluation are expressed in terms of definite one-dimensional integrals. Thus, we obtain 
the first approximate a~(c). Numerical results are presented in the Table 1 (second 

column) for the three different values of the parameter c. In this special case we can 

compare a~(c) with amax(C), for which the function f(c, v)+aQ(c, v)/[2(c - 1) 2] looses 
positivity (i.e. this function becomes negative for some v, as a > amax(C)). A ratio 

a~(c)/amax(C) is given in the third column of Table 1. A "step" in the direction Q(c, v) 

which is allowed due to the entropy reasons is never negligible in comparison to that 
determined by the positivity reasons. 

We can now use Eq. (23) to get the approximations of phase trajectories (13) and 
(15) as described in section 3 and in Appendix B. The derivation of the parameter 

g in expression (15), in accordance with the procedure of  Appendix B, Section B.5, 
gives g = 1 for all initial states (20). 

To make a comparison with the exact result (20), we have considered the depen- 
dences of  the normalized moments mk(mt): 

f (v2)S f dv 
ms(f) - f(v2)sfOdv, s = 0, 1,2 . . . . .  (25) 

Typical dependences of  the higher 

(1 = 2) are presented in Fig. l(a) 

state (20) with c = 1.42. 
An error of the approximation 

plane (mk, m#), the approximation 

moments (k/> 3) on the lowest non-trivial moment 

and (b) for a considerably non-equilibrium initial 

(15) was estimated as follows: In each moment 

(15) and the BKW-mode (20) generate two sets 
(the two curvilinear segments) Xkt and Ykt, respectively. Firstly, in order to eliminate 

the contribution from the difference in the total variation of the moments, we rescale 

Table 1 
The limiting states for the 
Maxwellian molecules 

1.12 3.1779 × 10 -3 0.2221 
1.24 1.1660 × 10 -2 0.4291 
1.48 3.8277 × 10 2 0.7087 
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Fig. I. Moment dependences for the Maxwellian molecules: (a) m3 vs. m2; (b) m8 vs. m2. The initial state 
fo  is the function (20) with c = 1.42; punctuated contour; the image of the triangle T; punctuated dashed 
line; the BKW-mode; solid line: the smooth approximation (15); punctuated path fo  --* f *  --~ fo ;  the 
non-smooth approximation (13). 

the  va r i ab les :  

Phi = m i / A i ,  i = k , l  , 

w h e r e  

zx /=  max Ix / -x~ l .  
x,x' EX~luY~l 
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Secondly, in the plane (thk,tht), we compute the Hausdorff distance dkl between the 

two corresponding sets Xkt and l~kt: 

dkz = max ~max min d(x ,y) ,max min d(x ,y)~ , (26) 
I, xCX~I yEYk! yEYkl xE)~kl ) 

where d(x, y) is the standard Euclidian distance between the two points. Finally, the 

error 6kl was estimated as the normalized distance dkt: 

6kl = dk--L • 100%, (27) 
Dk! 

where 

Dk/ = max d(x, y). 
x, y C Yk/uXk/ 

The error 6k2 of the plots in Figs. l(a) and (b) is presented in Table 2 for several 
values of the parameter c. 

The quality of the smooth approximation (15) is either good or reasonable up to 
k ~ 10, depending on the closeness of the initial state to the equilibrium state, and 
it becomes worse when either k increases, or the initial state is taken very far from 
the equilibria (i.e. when c is close to ~). For the moments of a very high order, the 
approximation with the smooth function (15) is only qualitative. On the other hand, 
the two-step (non-smooth) approximation (13) provides a much better approximation 
for very high moments (k ~ 40 and higher). The explanation is as follows: as is well 
known, the BKW-mode (20) demonstrates a very rapid relaxation of higher moments 
to their equilibrium values. Therefore, as it might be expected, the relaxation in the 

u 

direction Q0 brings us to the state wh~'~the higher moments are practically the same 
as in the equilibrium. 

Table 2 

The error  6k2 (27) o f  the approximat ion (15) for the Maxwell ian 

molecules  with the initial data (20)  

k c = 1.12 c = 1.24 c = 1.36 c = 1.48 c = 1.59 

3 0.31 0.33 0.30 0.41 0.70 

4 0.44 0.47 0.44 0.81 1.57 

5 0.58 0.55 0.71 1.41 2.67 

6 0.71 0.57 1.10 2.20 3.97 

7 0.81 0.62 1.58 3.14 5.40 

8 0.89 0.84 2.19 4.19 6.93 

9 0.95 1.11 2.87 5.34 8.52 

10 0.99 1.41 3.64 6.55 10.11 

20 1.46 6.77 12.91 18.15 22.87 

50 10.38 28.47 27.36 30.81 33.94 

100 21.76 29.26 32.49 34.78 37.22 
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The second test example is the VHP model [4, 5]. The distribution function F(x)  

depends on the phase variable x, where 0~<x~<oc, and is governed by the following 
kinetic equation: 

This model 

OG U 

O,F(x, t) / du f dy  [F(y, t )F(u - y, t) - F(x, t )F(u - x, t)]. 

x 0 

implies the two conservation laws: 

(x) 

N : fF(x,,)dx = 1 , 

0 

oo 

E = f xF(x, t) dx = 1 , 

0 

(28) 

and has the entropy S s ( F ) =  - f ~  F ( x ) l n F ( x ) d x .  The equilibrium distribution reads 
F°(x)  = exp(-x) .  The general solution to this model is known [4, 5, 9]. 

The first set of initial conditions which was tested is as follows: 

Fo(x, fl) = fl((2 - fl) + fl(fl - 1 ) x ) e x p ( - f l x ) ,  (29) 

where 1 ~</~ < 2, the value fl = 1 corresponds to the equilibrium state Fo(x, 1 ) = F°(x).  
In accordance with [4, 5, 9], the exact solution to Eq. (28) with the initial data (29) 

is as follows: 

Az_ + C eXZ_ ' Fex(X, fl, t) - Az+ + Cexz+ + _ _  
Z+ -- Z_ Z_ -- Z+ 

t + 2 • +  - C ,  
z ± -  2 

A =  1 - ( f l -  1)Ze-t; C = t + 2 f l -  1 + e - ' ( / 3 - 1 ) 2 .  

A comparison of the smooth approximation (15) with the exact solution (30) demon- 
strates the same quality as for the example of the Maxwellian molecules. As above, 
the normalized moments m k were compared, where 

f o  xkF(x)  dx 

mk = jo ~ xkFO(x ) dx" 

In Table 3, the error 6k2 given in Eq. (27) is represented for several values of the 
parameter fl, while Fig. 2 illustrates the typical moment behavior. We also represent in 
this figure a result of a correction to the approximation (15) due to the first iteration 
of a method introduced in [11] (see additional explanations in the next section). 

The second set of the initial conditions for the VHP model (28) was considered as 
follows: 

. 1 4 F0(x, 2) = exp( -2x)  { 1 + ½/~ + 2x2(1 - ) 0 +  5 )~x }, (31) 
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Table 3 
The Error 6k2 (27) of the approximation (15) for the 
VHP model with the initial data (29) 

/Y k 

4 6 8 l0 20 100 

1.2 0.95 1.81 2.26 2.23 2.24 9.64 
1.6 0.88 1.89 2.59 2.77 6.14 24.29 
1.9 1.16 1.65 1.45 3.16 12.7 28.22 

1- 

mlo - 

0.8- 

0.6 

0.4 

0.2 

F o 

i "  - ? 

11 . 

j "  

o . ,,."" . l / 

,1, f , , - " "  

, / "  , , . . . f / ' "  
f," .°. :o/~ 

' ~ o J 9  . . . .  ' . . . .  ' . . . .  ' . . . .  ' . . . .  0.92 0.94 0.96 0.98 
m 2 

Fig. 2. Moment dependence mj0 vs. m2 for the VHP model with the initial condition (29), /3 = 1.5: dots: 
the exact solution (30); bold line: the smooth approximation (15); solid line: the first correction to the 
approximation (15). 

where 0 < 2 < ½(7 + x / ~ ) .  The exact solution to Eq. (28) with the initial condi- 
tion (31) has been considered in [5]. This solution demonstrates the so-called Yjon 
overshoot effect [17]. Recall that the Tjon effect occurs when the distribution function 
becomes overpopulated for some velocities in comparison to both the initial and the 
equilibrium states. This effect was studied intensively for the soluble Boltzmann-like 
kinetic equations, like the Maxwellian molecules (19), the VHP model (28), and others 
(see [9, 18] and references therein; it is worthwhile to mention here extensive studies 
of the Tjon-like effects in chemical kinetics [19, 14]). 

The approximation (15) for the VHP model (28) with the initial condition (31) also 
demonstrates the overshoot just mentioned. In the moment representation as above, 
the overshoot of the moments is clearly seen in Figs. 3(a) and (b). The quality 
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FO / ;  
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m 3 

Fig. 3. Moment  dependences m6 vs. m3 for the VHP model with the initial condition: (31 (a) 2 = 0.6; (b) 
2 = 0.9; solid line: the exact solution [5]; bold line: the smooth approximation (15). 

of the approximation with respect to the error (27) is the same as in the examples 
above. 

Our final example is the Boltzmann equation (18) for the hard spheres to demonstrate 
that the computations are equally possible for models where exact solutions are not 
available. Figs. 4(a) and (b) demonstrate the moment dependences, as they appear in 
the approximation (15), when the initial state is taken as in Fig. 1, i.e. again on the 
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Fig. 4. Moment dependences for the hard spheres: (a) m3 vs. m2; (b) m8 vs. m2. The initial state f 0  is the 
function (20) with c = 1.42; punctuated dashed line: the BKW-mode for the Maxwellian molecules; solid 
line: the smooth approximation (15). 

BKW set (20). The moment dependence of the BKW-mode is also represented in these 
figures. 5 

5. Discussion 

The primary results of the paper are the following. 

5 Of course, the BKW-mode itself is neither exact nor the approximate solution for the hard spheres. 
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1. The description of the Q0-dominated kinetics and of its equilibrium state f* .  The 
state f *  is explicitly evaluated. 

2. The explicit construction of the approximate phase trajectory f ( F , a )  for (non- 
linear) space-independent kinetic equations. 

The approach used can be called "geometrical" since it avoids an explicit integration 
of kinetic equations in time. In point 1, it stays at variance with many alternative 
approaches to the early-time evolution, which usually involve the time integration over 
the first few collisions. These methods encounter two general difficulties: the time 
of integration cannot be defined precisely, and approximations involved can violate 
the entropy increase and the positivity. These difficulties are avoided in the present 
approach. On the other hand, the presentation of the Q0-dominated relaxation is itself 
an ansatz, whose relevance to the actual process can be judged only a posteriori. As 
the examples show, it appears to be reasonable indeed to speak about such a dynamics. 
It is remarkable that the limiting state is at a significant variance with both the initial 
and the equilibrium states. In other words, irrespective of how short in time the initial 
stage of the relaxation might be, a change of the state can be big. 

Concerning point 2, it is worthwhile to notice that, though the space-independent 
problem is too "refined", it nevertheless gives a good example of a problem without 
small parameters. It is r~ther remarkable that the global requirements to the trajectory 
(e.g. the entropy increase~are accomplished with the direct local analysis (Appendix 
B). Estimations in this part are sufficient and can be enhanced. 

Final comments concern a further treatment of the space-independent relaxation. As 
it was already mentioned at the end of the Introduction, the goal now is to develop a 
procedure of corrections to the approximate phase trajectory. In other words, what we 
need is a sequence of the functions f0(F,  a), f l ( F ,  a) . . . . .  which converges to the exact 

trajectory, and where f0 (F ,a )  is the initial (global) approximation to the trajectory. 
Again, a general obstacle is the absence of a small parameter in the problem. However, 
a recently developed method [12] appears to be appropriate (at least formally) since it 
is based on the Newton method and not on the small parameter expansions. It turns out 
that smoothness and all the requirements listed in the Introduction should be met by any 
initial approximation f0(F,  a) chosen for this procedure. Thus, the approximation (15) 
can be used for this purpose. We have already advanced this method with a result of 
the first Newton correction to the approximation (15) for the VHP model (see Fig. 2). 
However, a further consideration will take us far afield, and we defer a detailed pre- 
sentation of the correction procedure for a further publication. 
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Appendix A. Evaluation of limiting state 

Let us introduce a normalization of the partition Q0i(F): 

q0i(F) = q-lQ0~(F), q = / Q0i(r)dF. (A.1) 

F± 

Introducing a variable b = qa, so that f *  = fo(F)+b*qo(F), where q0(F) = q-lQ0(F),  
Eq. (4) can be rewritten as follows: 

A+(b*) = A_(b*), (A.2) 

where 

f q0~(r)ln(f0(F) + bq~o(r))dr. (A.3) A+(b) 

F± 

It is easy to check the following properties of the functions A± of (A.3): 
1. A domain of A+ is ]b+,+oo[, where b+ < 0, and a domain of A_ is ] -  ~ , b _ [ ,  

where b_ > 0. The functions A± have logarithmic singularities at the points b±, 
respectively. 

2. The functions A± are monotonic and concave inside their domains. 

3. An inequality holds as: A + ( 0 ) - A _ ( 0 )  = -q-lao < 0, where a0 = - f  Q0(F)In 
f 0 ( I ' ) dF  is the entropy production in the state f0.  

One has to solve Eq. (A.2) to get the approximations b~, b~ . . . .  not greater than the 
unknown exact value b*. To get a relevant estimate of b*, it is convenient to make 

use of concavity properties of the functions (A.3). Indeed, for positive b, the function 
A_ is estimated from below as: 

A_(b)>~A_(O) + ln(1 - cqb). 

Here ~1 is the inverse of b_: 

~l = sup q ° ( F )  = sup Q°(r-----~)_q-le, 
vet_ f0 (F)  vet qfo(F) 

(A.4) 

while c~ was introduced in (10). 
On the contrary, the function A+ should be estimated from above. Noting that the 

function expA+ is also monotonic and concave, we can write for positive b 

bdA+(O)  
A+(b)~<A+(O) + In 1 + db J' (A.5) 
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where 

dA+(O)db f (q0- (F)) 2 _  q-I 
- f 0 ( F ~ d F  = /7, 

F+ 

and /7 was introduced in (10). 
Equating the RHS of Eq. (A.5) to the RHS of Eq. (A.4), and solving a linear 

equation obtained, we get an estimate b~ < ~<b*. Next, turning back to the variable a, we 
get the estimation a~ < (9) and (10). One can readily recognize that the procedure just 
described is the first iterate of the Newton method for Eq. (A.2) (slightly modified by 
making use of the concavity to guarantee a I ..~a ). Further iterations are performed in 
the same manner. 

Appendix B. Smooth approximations of the phase trajectories 

B. 1. The triangle of model motions 

Notation conv{fl . . . . .  fk} will stand for a closed convex linear envelope of the 
functions f j  . . . .  , fk ,  and we drop the variable F. In particular, the triangle T introduced 
in Section 3 reads 

T = c~-fi-~{fo, f*,f°}. (B.1) 

A function from the triangle T can be specified with two parameters ~ and q as f(~,  q): 

f ( ¢ , q ) = f 0 + ~ { q ( f , _ f 0 ) + f 0 _ f 0 } ,  O~<~,r/~<l. (B.2) 

A shift of the function f(~,  r/) under a variation of ~ and of q reads 

AS(~, r/) = ~9¢f(¢, r#)A¢ + 3,f(~,  q)Ar# + o(A~, Ar/) 

= (f(~,  q) - f ° ) ~ - l A ~  + a*Q0~A~/+ o(A~, Aq).  

This shift is a superposition of two shifts: a shift towards f0  and a shift in the direction 
Q0. We further refer to these as the BGK-motion and the Q0-motion, respectively. The 
differential of the entropy Se(~, r/) = S,(f(¢, q)) is 

dSB(~,?]) = - O ' l ( ~ , q ) ~  -1 d ~  -]- o'2(~:, Y])~ d/~ , (U .3 )  

where 

i f (~ ,q)  a l (~ ,q )=  (f(~,~l)_fo) l n ~ 6 _ _ d F  ' (B.4) 

f (fo - f*)in f(~,q)dF = -a* f Qo In f(~,q)dF, O'2(~, ~)  = 

are the entropy production in the BGK-motion and in the Q0-motion, respectively. 
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Introducing smooth dependences, ~(a) and r/(a) where 0~<a~< 1, and requiring 

O<~(a),q(a)<<.l, 4(0)=  1, 4 (1 )=0 ,  

r/(0) = 0, 7(1) < e~, 

a¢(allo-o = 0 ,  dq(a---~)la:0 =7 ,  0 < 7~<1, 
da - da 

(B.5) 

we obtain a one-parametric set f ( a )  = f(~(a) ,  r/(a)). Geometrically, f ( a )  is a smooth 
curve located in T. This curve starts in f0  at a = 0, ends in f0  at a = 1, and is 

tangent to the side of T, L f o f *  = conv{fo, f*} ,  at a = 0. Further, only monotonic 
functions ¢(a) and q(a) will be considered: 

~(d~.a~ ~<0, dtl(a) >~0. (B.6) 
da da 

The crucial point is that the function f ( a )  should have a correct entropy behavior. 
More specifically, we require that the entropy Se(a) = S~(f(a))  = Ss( f ( ( (a) ,  q(a))) 
is a monotonic function: 

dSB(a)da - al(~(a)'q(a))¢-l(a)d~d(~aa ) + a2(~(a)'q(a))~(a)dqd(~ff) >~O" (B.7) 

Since ¢r1(~, q) is non-negative everywhere in T, a sufficient condition for inequality 
(B.7) to be valid for any pair of functions ~(a) and q(a) with the properties (B.5) 
and (B.6) is that a2(¢,q) is non-negative everywhere in T. However, this situation 
might not be realized for arbitrary f0  and Q0. For a general situation, we execute the 
following procedure: 

1. We derive a subset of T inside which a2 is non-negative. This subset includes 
f0,  and will be constructed as a triangle T t C_ T. 

2. We adjust the functions ~(a) and q(a) in such a way that a l (a)  dominates o'2(a) 
outside T'. 

B.2. The triangle T' 

Let us introduce a different specification of the functions in the triangle T. Denote 

f l ( y ) = ( 1 - y ) f o + y f  *, f 2 ( y ) = ( 1 - y ) f o + y f  °, 0~<y~<l. (B.8) 

The functions in T are labeled with two parameters x and y: 

f ( x , y )  = (1 - x ) f l ( y )  +x f2 (y ) ,  O ~ x , y ~  1. (B.9) 

Let us derive y,, where 0 < y'~< 1, in such a way that a2 is non-negative everywhere 
in the triangle T' = e--6-fi-q(f o, f l (y'), f2(Yl)}. 
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Introducing a representation 62(x , y) = a+ (x, y)  - a2 (x , y), where 

o'+(x,y) = / f o l n f ( x , y ) d F ,  a 2 ( x , y ) = / f * l n f ( x , y ) d F ,  (B.10) 

we notice that the functions a f ( x , y )  are concave in the variable y on the segment 
[0, 1 ], for any fixed x. Now we apply the standard estimations of a smooth concave 
function on [0,1] (if dZO(t)/dt2<~O on [0,1], then 0 ( t ) j > ( 1 -  t)0(0 ) + t0(1), and 
O(t) <~ dO(t)/dtlt=o, t + 0(0)) to the functions (B. 10): 

a f (x , y )  >~ (1 - y)~r+(x,O) + y~](x, 1), 

¢r~(x,y) <~ ~3yCr~(x,y)[y_O -y  + a~-(x, 0). 

Furthermore, the function ¢r+(x, 1) is concave, hence 

~r~(x, 1)~>(1 -x)~r~-(0, 1 )+  xcr~-(1, 1). 

Making use of the three inequalities just derived, and considering an explicit form of 
the function f (x ,  y), we are led to the following estimate of a2 in T: 

az(x, y)>~a* ~ro - y(xK1 + K2), (B.11 ) 

where ~r0 is the entropy production in the initial state (10), and parameters K1 and K2 
are given by 

K1 = (fo _ f * ) d F  + SB(f  °) - SB(f*), (B.12) 

x2 = ( f *  - f o )  a r  + s ~ ( f *  ) - s s ( f o ) .  

Here SB(fo), Ss(f*),  and S~( f  °) are the values of the entropy in the states f0, f* ,  
and f0,  respectively. 

Since ~ro is positive, there always exists a y', where 0 < y~< 1, such that the RHS 
of (B.11) is non-negative for all x in the segment [0, 1]. More specifically, introduce 
a function q~(x) = a*~0 - (xK1 +/£2), and denote 

z = a*~romin{Kzl,(K1 ÷K2) 1}, (B.13) 

where min{Kzl,(Ki + K2) -1 } stands for the minimal of the two numbers, K2 j and 
(K1 +/£2)-1. Then yt is defined as 

y , =  ~" 1 if ¢p(x)~>0 on [0, 1], or z~> 1, 
(B.14) 

( z otherwise. 

Thus, ~r2 is non-negative inside the triangle T' = c--6-~{fo, f l ( y ' ) , f 2 ( J ) } ,  where 
f l ,z(y ' )  are given by (B.8), and y/ is given by (B.t4). If y/ = 1, then T' = T, and 
o2 is non-negative everywhere in T. In this case any pair of the functions ~(a) and 
rl(a) with the properties (B.5) and (B.6) give the approximation f ( a )  consistent with 
the inequality (B.7). Otherwise, we continue the procedure. 
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B.3. Near-equilibrium estimations of the functions al and a2 

Let us come back to the specification (B.2) to establish the following inequalities 
for the functions at,2(~,r/) (Eq. (B.4)): 

al(~,r/) >~ Ml~ 2, (B.15) 

O'2(~,~/) >1/M2~. 

Inequalities (B.15) originate from the following consideration. Since f({,q)--+ fo  as 
--+ 0, parameter { controls a deviation of f ( { ,q)  from f0 in T. Near the equilibrium 

state f0,  the function crl({,q) is quadratic in 3, while the function a2({,r/) is linear. 
Inequalities (B. 15) extend these near-equilibrium estimations to other points of T, and 
they are intended to control a domination of a~ over a2 outside T' in the case T' ~ T. 

Writing al(¢,r/) = {).(~,r/) and representing 2({,~/) as a combination of the con- 
cave functions, and after making the estimations as above, we obtain the following 
expression for M1 in the first of the inequalities (B.15): 

M1 = SB(f °) - Ss(f*). (B.16) 

Since Ss( f  °) > Ss(f*),  expression (B.16) is always positive. An estimation of M2 
is much the same. Firstly, representing a2({,r/) as in (B.10), and again estimating the 
concave functions obtained, we obtain the following inequality: 

cr2(~,q)>~{(tlNi +N2) ,  (B.17) 

where the constants N1 and N2 are given by 

J5 N, = ( f o  - f * ) d r  + S ~ ( f o )  - S ~ ( f * ) ,  (B.18) 

/5 N2 = ( f o  _ f o )  d r  + & ( f o  I - & ( f o ) .  

Secondly, denoting min{N2,Nl + N2} as the minimal of the two numbers, N2 and 
N1 + N2, we derive the constant in the second of the inequalities (B.15): 

M2 = min{N2,Nl + N2}. (B.19) 

As above, there are two possibilities: 
1. If M2 t> 0, then ~2 is non-negative everywhere in T, and any pair of functions 

~(a) and q(a) with properties (B.5) and (B.6) gives f (a)  with the correct entropy 
behavior. 

2. If M2 < 0, then continue the procedure. 

B.4. Adjustment of the functions ~(a) and ~l(a) 

Let y' < 1 and )142 < 0. A further analysis requires an explicit form of the functions 
~(a) and q(a) with the properties (B.5) and (B.6), and can be maintained in any specific 
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case. Consider the simplest choice 

~(a) = 1 - a 2, q(a)  = 9a, (B.20) 

where 9, 0 < 9~< 1, is a parameter to be determined. The function (B.2) with the 
dependences (B.20) has a form (15): 

f q ( a )  = f o  + (1 - a 2 ) { y a ( f  * - f o )  + f o  - f0} .  (B.21) 

We should derive the parameter 9 in (B.20) in such a way that (i) the states f ( a )  of  
Eq. (15) belong to T ~, as a varies from 0 to some al ,  and also that (ii) a l ( a )  dominates 

a~(a) as a varies from al to 1. Under these conditions, the entropy inequality (B.7) is 
valid for all a on the segment [0, 1]. 

Substitute now (B.20) into (B.7) and apply the inequalities (B.15) to get 

dSB(a.__~) >~ 2a(1 - a 2 )M1 - 9( 1 - a 2 )2 [M2[. (B.22) 
da 

We require that f ( a l )  C c - - 6 f f q { f l ( y ' ) , f z ( y ' ) } ,  and that the RHS of  the inequality 

(B.22) is non-negative at al:  

---- f ( X l ,  y ) ,  
fq(al  ) ' (B.23) 
2a(l  - a2)Ml - 9(1 -- a2)21M211>0. 

Here f ( x l , f )  is the specification (B.9) of  the function fq(al  ). Explicitly, condition 

(B.23) reads 

a~ = Xl f ,  

alg(1 - a~) = (1 - xj )y ' ,  (B.24) 

9(1 - a~) ~< 2MI 
- -~a l  • 

Eliminating al  and xl in (B.24), we are left with the following estimation of  the 

parameter 9: 

V / f ( 1  + 2) (B.25) 

where 

2 -  
2MI 

(B.26) 

It may happen that the RHS of  the inequality (B.25) is greater than 1. In this case 
we take 9 = 1 in (B.21). Thus, if  y '  < 1 and M2 < 0, the parameter 9 in (B.21) and 



A.N. Gorban et al. IPhysica A 231 (1996) 648-672 671 

(15) is estimated as 

( x /y ' (1  + 2 ) 1  
9 = min ~, 1,2 ] - ~ y ,  T 2  ~" 

B.5. Summary  

(B.27) 

The choice o f  the parameter 9 in the smooth approximation to the phase trajectory 

(15) is due to the following sufficient procedure: 

1. Evaluate K1 and K2 (Eq. (B.12)). 

2. I f  a ' a 0 -  ( K l x + K 2 ) ~ O  on [0, 1], take 9 = 1, otherwise evaluate 

y'  = a * oomin{K]-l ,(K1 + K2)- l} .  

3. If  y'>~ 1, take 9 = 1, otherwise evaluate N1 and N2 (Eq. (B.18)). 

4. I f  min{N2,Nl +N2} >t0, take 9 = 1, otherwise evaluate Mi (Eq. (B.16)) and take 

2M1 
9 = m i n  1,2 -v/Y'~, ~2--) ~ 2 -  

1 - y  + 2  j '  IM=[ 

The function fq(a)  of  (15) with 9 thus derived has the following properties: 

1. It begins in f 0  at a = 0 and ends in f 0  at a = 1. 

2. It is a non-negative function o f  1 ~ for each a. 

3. It satisfies the conservation laws. 

4. The entropy SB(fg(a))  is a monotonic function of  a. 

5. It is tangent to the exact trajectory at a = 0. 

In practical calculations, the approximation f ~  = f o  + a~Qo with a]' of  (9) can be 

used elsewhere in this algorithm instead of  the exact f* .  
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