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  Abstract 
 Complexity in the description of big chemical reaction networks has both struc-
tural (number of species and reactions) and temporal (very different reaction 
rates) aspects. A consistent way to make model reduction is to construct the 
invariant manifold which describes the asymptotic system behaviour. In this pa-
per we present a discrete analog of this object: an invariant grid. The invariant 
grid is introduced independently from the invariant manifold notion and can 
serve to represent the dynamic system behaviour as well as to approximate the 
invariant manifold after refi nement. The method is designed for pure dissipative 
systems and widely uses their thermodynamic properties but allows also gener-
alizations for some classes of open systems. The method is illustrated by two 
examples: the simplest catalytic reaction (Michaelis-Menten mechanism) and 
the hydrogen oxidation. 
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 Simplexus 
 A large chemical reaction network can 

serve as a good model for imitating and 
predicting behaviour in various kinds of 
complex systems with interacting compo-
nents, according to Gorban, Karlin, and 
Zinovyev. Complexity in the description of 
such a reaction network has both structur-
al (number of chemicals and the reactions 
in which they take part) and temporal (dif-
ferent reaction rates) properties. For the 
network of biochemical reactions that take 
place in a living cell, the picture becomes 
very complicated, so a way of simplifying 
the network is needed. One consistent way 
of modelling a complex network is to con-
struct its invariant manifold which de-
scribes its characteristics in multidimen-
sional space of species concentrations. To 
glean information from the model, one 
then observes its behaviour projected onto 
the manifold. 

 In the present paper, the researchers 
have created a discrete analog of this the 
invariant manifold: an invariant grid. The 
invariant grid can represent dynamic sys-
tem behaviour as well as provide an ap-
proximation of the reaction network’s in-
variant manifold. The team explains that 
their approach has been developed for 
pure dissipative systems, in which the en-
tropy grows monotonically and so utilizes 
thermodynamic properties of such sys-
tems. On the other hand, it is constructed 
so that it also allows them to generalize for 
numerous classes of open systems. For il-
lustration, the team has focused on the ox-
idation of hydrogen and the simplest pos-
sible catalytic reaction, one that follows a 
conventional Michaelis-Menten mecha-
nism. 

 The ultimate aim of this research is to 
provide a methodology for reducing the 
complexity of complex reactions and other 
systems and so allow new insights to be 
gained. Since all rate constants and com-
plete reaction laws are rarely available for 
many complex reaction networks, their ap-
proach, which reduces the number of sys-
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 1 Introduction 
 Reaction networks serve as a good 

model to imitate and predict behaviour of 
complex systems of interacting compo-
nents. Modern research is faced with a con-
stantly increasing complexity of the sys-
tems under study: a good example is the 
fact that nowadays one can observe a boom 
in connection with studies of biochemical 
processes in a living cell [for recent over-
views, see  1, 2] . There is no need to under-
line an emerging need for methods of re-
ducing the complexity of system descrip-
tion and behaviour. 

 The complexity in modelling big chem-
ical reaction networks has both structural 
(number of species and reactions) and 
temporal (very different reaction rates) as-
pects (see  fi g. 1 ). In general, it is not pos-
sible to disregard the temporal organiza-
tion of the network when one wants to cre-
ate a realistic system model. Of course, the 
rate constants and reaction laws are rarely 
available completely. This makes extreme-
ly desirable the development of methods 
allowing to reduce the number of system 
parameters as well as methods for qualita-
tive analysis of chemical reaction networks 
 [2] . 

 The idea of model reduction with re-
spect to slow motion extraction can be in-

tem parameters required to be specifi ed or 
measured with precision, will facilitate the 
qualitative analysis of chemical reaction 
networks. 

 To begin with, the team considered an 
approach to model reduction with respect 
to slow motion extraction in which a sys-
tem of ordinary differential equations de-
scribing time evolution of a number of 
species of variable concentration (or mass) 
is sampled on a slow timescale, so, by anal-
ogy with statistical physics, a macroscopic 
description is obtained for a chemical sys-
tem without considering fully detailed dy-
namics of microscopic variables. The dy-
namics of this reduced system can then be 
represented on a multidimensional mani-
fold within a phase space of dimensions 
equal to the number of different chemical 
species involved. The pattern of positively 
invariant manifold is formed by slow mo-
tion segments of the system individual tra-
jectories. The goal is to fi lter out the mani-
fold and so provide a clear picture of how 
a dissipative dynamical system approach-
es its equilibrium. 

 In order to do this for a complex chem-
ical reaction networks a computationally 
effective method is needed to build the in-
variant manifold in the fi rst place. Thus 
constructing a surface of relatively low di-
mensionality can be reduced to a grid-
based method . In this paper, Gorban, Kar-
lin, and Zinovyev detail this method of in-
variant grids (MIG) approach. They point 
out that a grid could be refi ned repeatedly 
to bring it closer to the idea of the invariant 
manifold but by defi ning an invariant grid 
as an object independent of the manifold. 
An invariant grid, they explain further, is 
an undirected graph consisting of a set of 
nodes and the connections between them. 
The graph can be represented in a low-di-
mensional space with reduced coordinates. 
In this form, it is simply a fi nite lattice (reg-
ular and rectangular or hexagonal) but is 
simultaneously embedded in the phase 
space of the reaction system so that each 
node corresponds to a combination of 

troduced as follows: we have a system of 
ordinary differential equations describing 
time evolution of  n  species concentrations 
(or masses) in time: 

dx

dt
= J(x)

 
.        (1)

 Every particular state of the system cor-
responds to a point in the phase space  U 
 and the system dynamics is determined by 
the vector fi eld  J ( x ),  x  D  U . We construct 
new (reduced) dynamics 

dy

dt
= J ′(y),

         (2)

 where  y  i ,  i  = 1 ...  m ,  m   O   n  is a new set of 
variables corresponding to the slow dy-
namics of the initial system (1). By analogy 
with statistical physics it corresponds to 
the ‘macroscopic’ description of the chem-
ical system (we observe only effects of slow 
system changes, comparable in time scale 
with characteristic times of experimental 
measurements) as opposed to ‘microscop-
ic’ variables  x  i . The reduced system dy-
namics exists on an  m -dimensional mani-
fold (surface)  �  embedded in the  n -di-
mensional phase space and defi ned by 
functions  x  i  =  x  i ( y  1 , ...,  y  m ). 

 A consistent way of model reduction is 
to construct a positively invariant slow 

a
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 O 2 H 2O 

OH

  Fig. 1.  Graphical representation of two model systems considered as examples in this paper: 
Michaelis-Menten mechanism ( a ) and hydrogen burning model with 6 variables ( b ). Here 
circles represent chemical species, squares represent chemical reactions. Line thickness refl ects 
direct reaction rate constants, a thicker line corresponds to a slower reaction (in a logarithmic 
scale). All reactions here are governed by mass action law and supposed to be reversible. 
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chemical species concentrations. The con-
nectivity of such a graph is needed to cal-
culate a tangent space in every node using 
differentiation operators. 

 Gorban, Karlin, and Zinovyev here pro-
pose two algorithms, both iterative – a 
Newtonian type algorithm and a relax-
ation method that can be used to produce 
such a graph. They have demonstrated 
proof of principle using dissipative reac-
tion systems so that their thermodynamic 
properties can be used to clearly defi ne the 
metrics of the phase space and so allow 
them to perform geometrical calculations 
on their graph. Low-dimensional invariant 
manifolds do exist for other types of sys-
tems presenting more complicated dy-
namic behaviour but most of the physical-
ly signifi cant models include non-dissipa-
tive components and thus can be analyzed 
with use of thermodynamics. 

 The researchers applied the MIG ap-
proach fi rst to a simple two-step catalytic 
reaction in which the reaction of two reac-
tants is promoted by a catalyst to produce 
a product and a by-product. The research-
ers assume a standard Michaelis-Menten 
mechanism for the chemical changes that 
take place. Their second example is a mod-
el of the hydrogen burning (oxidation) re-
action. This is more complicated as there 
are six concentrations to consider (molec-
ular hydrogen, oxygen, and water, and three 
radicals, H, O, and OH). The resulting in-
variant grids provide much information 
about the character of system slow dynam-
ics from different perspectives, how it pro-
ceeds depending on initial concentrations 
and what effect has viewing it close or far 
away from the equilibrium. The ultimate 
achievement is that a complex system be-
comes far easier to visualize using the grid-
based approach than attempting to appre-
ciate a detailed multidimensional vector 
fi eld. 

 The team emphasize that their approach 
allows one to visualize simultaneously 
many different scenarios of system behav-
iour, together with different characteristics 

manifold  �  inv , such that if an individual 
trajectory of the system (1) has started on 
 �  inv , it does not leave  �  inv    anymore, i.e. 
the vector fi eld  J ( x ) in the points of the 
manifold is tangent to it ( fi g. 2 a). The ‘ideal’ 
picture of the reduced description we have 
in mind is as follows: a typical phase trajec-
tory,  x ( t ), where  t  is the time, and  x  is an 
element of the phase space, consists of two 
pronounced segments. The fi rst segment 
connects the beginning of the trajectory, 
 x (0), with a certain point,  x ( t  1 ), on the 
manifold  �  inv    (rigorously speaking, we 
should think of  x ( t  1 ) not on  �  inv    but in a 
small neighbourhood of  �  inv    but this is 
not essential for the ideal picture). The sec-
ond segment belongs to  �  inv . Thus, the 
manifolds appearing in our ideal picture 
are ‘patterns’ formed by the segments of in-
dividual trajectories, and the goal of the 
reduced description is to ‘fi lter out’ this 
manifold ( fi g. 2 a). 

 Usually the construction of invariant 
manifold in the explicit form is diffi cult. 
Most of the time one deals with its approx-

imation constructed using a method [for 
overview, see  3–  8] . It is formally possible 
to induce new dynamics on any given 
manifold  � , not necessarily invariant, if 
one introduces a projector operator  P  of 
the vector fi eld on the tangent bundle of the 
manifold  � :  PJ ( x  D  � ) D  T  x  � . By defi ni-
tion, the manifold  �  is invariant with re-
spect to the vector fi eld  J  if and only if the 
following equality is true for each  x  D  � : 

 [1 –  P ] J ( x ) = 0,                               (3) 

 where projector  P  depends on the point  x 
 and on the manifold  �  in the vicinity of  x . 
This equation is a differential equation for 
functions that defi ne the manifold  � . The 
Newton method and the relaxation meth-
od, both iterative, were proposed to fi nd a 
sequence of corrections to some initial ap-
proximation  � , in such a way that every 
next approximation has less  invariance 
 defect [1 –  P ] J ( x ) [see  5] . These correc-
tions can be performed analytically in 
some cases. 

a

J(x) 

� inv

U

b

�=(1-P)J(x) �

U

T x

x

J (x)

PJ (x)

x+kerP

y
W

F F

dy/dt

Fig. 2. Main geometrical structures of model reduction:  U  is the phase space,  J ( x ) is the vector 
fi eld of the system under consideration:  dx / dt = J ( x ),  �  is an ansatz manifold,  W  is the space 
of macroscopic variables (coordinates on the manifold), the map  F :  W   ]   U  maps any point 
 y  D  W  into the corresponding point  x = F ( y ) on the manifold  � ,  T  x    is the tangent space to the 
manifold  �  at the point  x ,  PJ ( x ) is the projection of the vector  J ( x ) onto tangent space  T  x , the 
vector fi eld  dy / dt  describes the induced dynamics on the space of parameters,  �  = (1 –  P ) J ( x ) 
is the defect of invariance, the affi ne subspace  x  + ker  P  is the plain of fast motions, and  �  D  
 ker  P .  a  Here  �  inv    is an invariant manifold (all  J ( x  D    �  inv ) are tangent to  �  inv ) and a possible dy-
namics is shown in its vicinity.  b  Here  �  is some manifold approximating the invariant manifold 
( J ( x  D    � ) is not necessarily tangent to  � ), one can use operator  P  to derive new dynamics (2).
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 For the case of a complex chemical reac-
tion network, one has to develop a compu-
tationally effective method of invariant 
manifold construction. If one constructs a 
surface of a relatively low dimension, grid-
based manifold representations become a 
relevant option  [8] . In this paper we pres-
ent such an approach named  method of in-
variant grids  (MIG). On one hand, grid rep-
resentation can be refi ned and converge 
more and more closely to the invariant 
manifold. On the other, we defi ne  invariant 
 grid as an object independent of the man-
ifold itself. Thus, it can be used indepen-
dently: for example, for visualization of the 
global system dynamics as will be shown 
at the end of this paper. 

 Invariant grid is an undirected graph 
which consists of a set of nodes and con-
nections between them. The graph can be 
represented in two spaces: in the low-di-
mensional space of the internal (reduced) 
coordinates where it forms a fi nite lattice 
(usually, regular and rectangular or hex-
agonal), and, simultaneously, it is embed-
ded in the phase space  U ; thus every node 
corresponds to a species concentration 
vector   x  . Using connectivity of the graph, 
one can introduce differentiation opera-
tors and calculate the tangent vectors and 
defi ne the projector operator in every node. 
This is the only place where the connectiv-
ity of the graph is used. The node positions 
in  U  are optimized such that the invariance 
condition (3) is satisfi ed  for every node . In 
this paper we propose two algorithms on 
how to do it, both iterative: of the Newton 
type and a relaxation method. After node 
position optimization the grid is called  in-
variant . 

 In this study we consider a class of dis-
sipative systems, i.e. such systems for 
which there exists a global convex Lyapu-
nov function  G  (thermodynamic poten-
tial) which implements the second law of 
thermodynamics. For example, for this 
reason, all reactions on  fi gure 1  are revers-
ible. Dissipative systems have the only 
steady state in the equilibrium point and as 

of the system. For instance, it becomes im-
mediately apparent in the hydrogen burn-
ing model that, for instance, the concentra-
tion of molecular hydrogen (H 2 ) on the 
way to equilibrium changes in two stages: 
very little during the initial fast stage but 
gradually as equilibrium is approached. In 
contrast, the oxygen radical (O) coordinate 
is fast. Concentration changes rapidly in 
the initial stage but once equilibrium is ap-
proached it reaches a plateau. The behav-
iour of the hydroxy radical, OH, is decep-
tive. Depending on the initial conditions it 
can behave as slow or as fast variable and 
this fact is clearly visible on the map. The 
extension of the MIG approach to more so-
phisticated, yet related reactions in bio-
chemistry or atmospheric chemistry could 
provide new insights into the behaviour of 
crucial chemical species. 

 The researchers conclude that the great 
utility of their technique for chemical sys-
tems may also be applicable beyond chem-
ical kinetics. Their discrete invariant ob-
ject could be used to visualize other types 
of functions and properties, for example, 
in the ‘kinetics + transport’ systems or in 
the control theory. 

  David Bradley of Sciencebase.com  

the time  t  tends to infi nity, the system 
reaches the equilibrium state, while in the 
course of the transition the Lyapunov func-
tion decreases monotonically. Thermody-
namic properties of dissipative systems 
help a lot: for example, they unambiguous-
ly defi ne metrics in the phase space to per-
form geometrical calculations and also 
defi ne the choice of projector  P  almost 
uniquely (see next section). 

 Low-dimensional invariant manifolds 
also exist for systems with a more compli-
cated dynamic behaviour so why study the 
invariant manifolds of slow motions for a 
particular class of purely dissipative sys-
tems? The answer is the following: most of 
the physically signifi cant models include 
non-dissipative components in the form of 
either a conservative dynamics or in the 
form of external fl uxes. For example, one 
can think of irreversible reactions among 
the suggested stoichiometric mechanism 
(inverse processes are so improbable that 
we discard them completely, thereby effec-
tively ‘opening’ the system to the remaining 
irreversible fl ux). For all such systems, the 
MIG is applicable almost without special 
refi nements, and bears the signifi cance 
that invariant manifolds are constructed 
as a ‘deformation’ of the relevant manifolds 
of slow motion of the purely dissipative dy-
namics. An example of this construction 
for open systems is presented below in the 
last section of the paper. The calculations 
in the last section do not use grid specifi cs 
and can be applied not only for grid repre-
sentation of the invariant manifold, but 
also for any analytical form of its represen-
tation. 

 2 Dissipative Systems and 
Thermodynamic Projector 
 2.1 Kinetic Equations 
 Let us introduce the notions used in the 

paper [see also  3, 7, 9] . We will consider a 
closed system with  n  chemical species 
A 1 , ..., A n , participating in a complex reac-
tion. The complex reaction is represented 
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by the following stoichiometric mecha-
nism: 

αs1A1 + . . . + αsnAn ⇀↽ βs1A1 + . . . + βsnAn,

           (4) 

 where the index  s  = 1, ...,  r  enumerates the 
reaction steps, and where integers, α     si    and 
  β   si , are stoichiometric coeffi cients. For 
each reaction step  s , we introduce  n -com-
ponent vectors    α    s    and    β    s    with components 
  α   si    and   β   si . Notation    γ    s    stands for the vec-
tor with integer components   γ   si   =  β   si  –   α   si   
 (the stoichiometric vector). 

 For every  A  i    an  extensive variable N  i , 
‘the number of particles of that species’, is 
defi ned. The concentration of  A  i    is  x  i   = 
N  i  / V , where  V  is the volume. 

 Given the stoichiometric mechanism 
(4), the reaction kinetic equations read: 

Ṅ = V J(x), J(x) =
r∑

s=1

γsWs(x),
   

(5)
 

 where the dot denotes the time derivative, 
and  W  s    is the reaction rate function of the 
step  s . In particular,  the mass action law 
 suggests the polynomial form of the reac-
tion rates: 

Ws(x) = W+
s (x) − W−

s (x) =

k+
s (T )

n∏

i=1

xαi
i − k−

s (T )
n∏

i=1

xβi
i ,

 
     (6)

 where  k+
s(T)  and  k–

s(T)  are the constants of 
the direct and of the inverse reactions rates 
of the  s -th reaction step,  T  is the tempera-
ture. 

 The rate constants are not independent. 
The  principle of detail balance  gives the fol-
lowing connection between these con-
stants: there exists such a positive vector 
  x   eq ( T ) that 

W+
s (xeq) = W−

s (xeq) for all s = 1, . . . , r. 
         (7)

 For  V ,  T  =  const  we do not need addi-
tional equations and data. It is possible 
simply to divide equation (5) by the con-
stant volume and to write 

ẋ =
r∑

s=1

γsWs(x).
  

     (8)

 Conservation laws (balances) impose 
linear constraints on admissible vectors   x  : 

 (  b   i ,   x  ) =  B  i  =  const ,  i  = 1, ...,  l ,                            (9) 

 where   b   i    are fi xed and linearly indepen-
dent vectors. Let us denote as   B   the set of 
vectors which satisfy the conservation laws 
(9) with given  B  i : 

   B   = {  x    | (  b   1 ,   x  ) =  B  1 , ..., (  b   l ,   x  ) =  B  l }. 

 The natural phase space   X   of the system 
(8) is the intersection of the cone of  n -di-
mensional vectors with non-negative com-
ponents, with the set   B  , and dim  X   =  d  =  
n  –  l . In addition, we assume that each of 
the conservation laws is supported by each 
elementary reaction step, that is 

 (  γ   s ,   b   i ) = 0,                                         (10) 

 for each pair of vectors   γ   s    and   b   i . 
 We assume that the kinetic equation (8) 

describes evolution towards the unique 
equilibrium state,   x   eq , in the interior of the 
phase space   X  . Furthermore, we assume 
that there exists a strictly convex function 
 G (  x  ) which decreases monotonically in 
time due to (8): 

       (11)Ġ = (∇G(x), J(x)) ≤ 0.

 Here   �   G  is the vector of partial derivatives 
F G /F x  i , and the convexity assumes that the 
 n   !   n  matrices 

  H  x  =  ||   F 2  G (  x  )/F x  i F x  j   ||                    (12) 

 are positive defi nite for all   x   D   X  . In addi-
tion, we assume that the matrices (12) are 
invertible if   x   is taken in the interior of the 
phase space. 

 The matrix   H   defi nes an important Rie-
mann structure on the concentration 
space, the thermodynamic (or entropic) 
scalar product: 

〈x, y〉c = (x,Hxy)   (13) 

 This choice of the Riemann structure is 
unambiguous from the thermodynamic 
perspective. We use this metrics for all geo-
metrical constructions, for measuring an-
gles and distances in the phase space  U . 

 The function  G  is the Lyapunov func-
tion of the system (5), and   x   eq  is the point 
of global minimum of the function  G  in the 
phase space   X  . Stated differently, the man-
ifold of equilibrium states   x   eq ( B  1 , ...,  B  l ) is 
the solution to the variational problem, 

  G   ]  min for (  b   i ,   x  ) =  B  i , i = 1, ...,  l .               (14) 

 For each fi xed value of the conserved quan-
tities  B  i , the solution is unique. 

 For perfect systems in a constant vol-
ume under a constant temperature, the 
Lyapunov function  G  reads: 

G =
n∑

i=1

xi[ln(xi/xeq
i ) − 1].

    
(15)

 2.2 Thermodynamic Projector 
 For dissipative systems, we keep in 

mind the following picture ( fi g. 2 ). The vec-
tor fi eld  J ( x ) generates the motion on the 
phase space  U :  dx / dt  =  J ( x ). An ansatz 
manifold  �  is given, it is the current ap-
proximation to the invariant manifold. 
This manifold  �  is described as the image 
of the map  F :  W   ]   U , where  W  is a space 
of macroscopic variables, and  U  is our 
phase space. 

 The projected vector fi eld  PJ ( x ) belongs 
to the tangent space  T  x , and the equation 
 dx / dt = PJ ( x ) describes the motion along 
the ansatz manifold  �  (if the initial state 
belongs to  � ). The induced dynamics on 
the space  W  is generated by the vector 
fi eld 

dy

dt
= (DyF )−1PJ(F (y)).

 Here the inverse linear operator ( D  y  F ) –1  is 
defi ned on the tangent space  T  F  (  y  ) , because 
the map  F  is assumed to be immersion, 
that is the differential ( D  y  F ) is the isomor-
phism onto the tangent space  T  F  (  y  ) . 
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 Projection operators  P  contribute to the 
invariance equation (3). Limiting the re-
sults, exact solutions only weakly depend 
on the particular choice of projectors, or do 
not depend on it at all. However, thermo-
dynamic validity of approximations ob-
tained at each iteration step towards the 
limit strongly depends on the choice of the 
projector. 

 Let  some  (not obligatory invariant) 
manifold  �  be considered as a manifold of 
reduced description. We should defi ne a 
fi eld of linear operators,  P  x   , labelled by the 
states   x   D  � , which project the vectors 
  J  (  x  ),   x   D  �  onto the tangent bundle of the 
manifold  � , thereby generating the in-
duced vector fi eld,  P  x  J (  x  ),   x   D  � . This in-
duced vector fi eld on the tangent bundle of 
the manifold  �  is identifi ed with the re-
duced dynamics along the manifold  � . 
The  thermodynamicity  requirement for 
this induced vector fi eld reads 

 ( �  G (  x  ),  P  x  J (  x  )) ̂  0, for each   x   D  � .           (16) 

 The condition (16) means that the en-
tropy S (which is the Lyapunov function 
with a minus sign) should increase in the 
new dynamics (2). 

 How to construct the projector  P ? An-
other form of this question is: how to de-
fi ne the plain of fast motions  x  + ker  P ? The 
choice of the projector  P  is ambiguous, 
from the formal point of view, but the sec-
ond law of thermodynamics gives a good 
idea  [3] : the entropy should grow in the 
fast motion, and the point  x  should be the 
point of entropy maximum on the plane of 
fast motion  x  + ker  P . That is, the subspace 
ker  P  should belong to the kernel of the en-
tropy differential: 

 ker  P  x   �  ker  D  x  S . 

 Of course, this rule is valid for closed sys-
tems with entropy, but it can also be ex-
tended onto open systems: the projection 
of the ‘thermodynamic part’ of  J ( x ) onto  T  x   
 should have a positive entropy production. 
If this thermodynamic requirement is val-
id for any ansatz manifold not tangent to 

the entropy levels and for any thermody-
namic vector fi eld, then the thermody-
namic projector is unique  [10] . Let us de-
scribe this projector  P  for a given point  x , 
subspace  T  x   =  imP, differential  D  x  S  of the 
entropy  S  at the point  x  and the second dif-
ferential of the entropy at the point  x , the 
bilinear functional  (D2

xS)x.  We need the 
positively defi nite bilinear form  �z|p�x = 
–(D2

xS)x(z,p)  (the entropic scalar product). 
There exists a unique vector  g  such 
that �g|p�x = DxS(p).  It is the Riesz repre-
sentation of the linear functional  D  x  S  with 
respect to entropic scalar product. If  g   0  0 
then the thermodynamic projector is 

P (J) = P⊥(J) +
g‖

〈g‖|g‖〉x 〈g
⊥|J〉x,     (17)

 where  P   � is the orthogonal projector onto 
 T  x    with respect to the entropic scalar prod-
uct, and the vector  g  is split into tangent 
and orthogonal components: 

g = g‖ + g⊥; g‖ = P⊥g; g⊥ = (1 − P⊥)g.

 This projector is defi ned if  g���0. 
 If  g =  0 (the equilibrium point) then 

 P ( J ) =  P  � ( J ). 
 For given  T  x , the  thermodynamic pro-

jector  (17) depends on the point  x  through 
the  x -dependence of the scalar product 
�|� x , and also through the differential of  S 
 in  x . 

 2.3 Symmetric Linearization 
 The invariance condition (3) supports a 

lot of invariant manifolds, and not all of 
them are relevant to the reduced descrip-
tion (for example, any individual trajecto-
ry is itself an invariant manifold). This 
should be carefully taken into account 
when deriving a relevant equation for the 
correction in the states of the initial mani-
fold  �  0  which are located far from equilib-
rium. This point concerns the procedure of 
the linearization of the vector fi eld   J  , ap-
pearing in equation (1). Let  c  be an arbi-
trary point of the phase space. The linear-
ization of the vector function   J   about   c   may 
be written  J (  c   +   �  c  )  ;    J(  c  ) +  L  c   �  c   where 

the linear operator  L  c    acts as follows (for 
the mass action law): 

Lcx =
r∑

s=1

γs[W
+
s (c)(αs,Hcx)

− W−
s (c)(βs,Hcx)].

        
 (18)

 Here  H  c    is the matrix of second derivatives 
of the function  G  in the state  c , see (12). The 
matrix  L  c    in (18) can be decomposed as 
follows: 

Lc = L′
c + L′′

c.      (19)

 Matrices   L   �   c     and   L ��   c               act as follows: 

L′
cx = −1

2

r∑

s=1

[W+
s (c) + W−

s (c)]γs(γs,Hcx),

L′′
cx =

1
2

r∑

s=1

[W+
s (c) − W−

s (c)]γs(αs + βs,Hcx).

(20, 21)

 Some features of this decomposition are 
best seen when we use the thermodynam-
ic scalar product (13): The following prop-
erties of the matrix   L�      c     are verifi ed imme-
diately: 

 (i) The matrix   L�  c         is symmetric in the 
scalar product (13): 

       (22)〈x,L′
cy〉 = 〈y,L′

cx〉.

 (ii) The matrix   L�  c         is non-positive defi -
nite in the scalar product (13): 

〈x, L′
cx〉 ≤ 0.      (23)

 (iii) The null space of the matrix  L�  c        is 
the linear envelope of the vectors  Hc

–1bi 
 representing the complete system of con-
servation laws: 

kerL′
c = Lin{H−1

c bi, i = 1, . . . , l}.    (24)

 (iv) If   c  =  c   eq , then 

      andW+
s (ceq) = W−

s (ceq),
  

L′
ceq = Lceq .       (25)

 Thus, the decomposition (19) splits the 
matrix  L  c    in two parts: one part, (20), is 
symmetric and non-positive defi nite, while 
the other part, (21), vanishes in the equi-
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librium. The decomposition (19) explicitly 
takes into account the mass action law. For 
other dissipative systems, the decomposi-
tion (19) is possible as soon as the relevant 
kinetic operator is written in a gain-loss 
form. 

 3 Invariant Grids 
 In most of the works (of us and of other 

people on similar problems), analytic 
forms were required to represent mani-
folds (see, however, the method of Legen-
dre integrators  [11–13] ). However, in order 
to construct manifolds of a relatively low 
dimension, grid-based representations of 
manifolds become a relevant option  [8] . 

 The main idea of the MIG is to fi nd a 
mapping of the fi nite-dimensional grids 
into the phase space of a dynamic system. 
That is, we construct not just a point ap-
proximation of the invariant manifold 
 F* ( y ), but an  invariant grid . When refi ned, 
it is expected to converge, of course, to 
 F* ( y ), but in any case it is a separate, inde-
pendently defi ned object. 

 Let us denote  L = R  n ,  G  is a discrete sub-
set of  R  n . It is natural to think of a regular 
grid, but this is not so crucial. For every 
point  y  D  G , a neighbourhood of  y  is de-
fi ned:  V  y     �   G , where  V  y    is a fi nite set, and, 
in particular,  y  D  V  y . On regular grids,  V  y   
 includes, as a rule, the nearest neighbours 
of  y . It may also include the points next to 
the nearest neighbours. 

 For our purpose, we need to defi ne a 
grid differential operator. For every func-
tion, defi ned on the grid, all derivatives are 
also defi ned: 

            ,
∂f

∂yi

∣∣∣
y∈G

=
∑

z∈Vy

qi(z, y)f(z), i = 1, . . . n

       (26)

 where  q  i ( z, y ) are some coeffi cients. 
 Here we do not specify the choice of the 

functions  q  i ( z ,  y ). We just mention in pass-
ing that, as a rule, equation (26) is estab-
lished using some approximation of  f  in 
the neighbourhood of  y  in  R  n    by some dif-
ferentiable functions (for example, poly-

nomials). This approximation is based on 
the values of  f  at the points of  V  y . For regu-
lar grids,  q  i ( z ,  y ) are functions of the differ-
ence  z  –  y . For some of the nodes  y  which 
are close to the edges of the grid, functions 
are defi ned only on the part of  V  y . In this 
case, the coeffi cients in (26) should be 
modifi ed appropriately in order to provide 
an approximation using the available val-
ues of  f . Below we assume this modifi cation 
is always done. We also assume that the 
number of points in the neighbourhood  V  y   
 is always suffi cient to make the approxima-
tion possible. This assumption restricts 
the choice of the grids  G . Let us call  admis-
sible  all such subsets  G , on which one can 
defi ne differentiation operator in every 
point. 

 Let  F  be a given mapping of some ad-
missible subset  G   �   R  n    into  U . For every  
y  D  V  we defi ne tangent vectors: 

Ty = Lin{gi}n
1 ,    (27)

 where vectors  g  i  ( i =  1, ...,  n ) are partial 
derivatives (26) of the vector function  F : 

       (28)gi =
∂F

∂yi
=

∑

z∈Vy

qi(z, y)F (z),

 or in the coordinate form: 

       (29)(gi)j =
∂Fj

∂yi
=

∑

z∈Vy

qi(z, y)Fj(z).

 Here ( g  i ) j    is the  j -th coordinate of the vec-
tor ( g  i ), and  F  j ( z ) is the  j -th coordinate of 
the point  F ( z ). 

 The grid  G  is  invariant , if for every node 
 y  D  G  the vector fi eld  J ( F ( y )) belongs to the 
tangent space  T  y    (here  J  is the right hand 
side of the kinetic equation (1)). 

 So, the defi nition of the invariant grid 
includes: 

 1) The fi nite admissible subset  G   �   R  n . 
 2) A mapping  F  of this admissible sub-

set  G  into  U  (where  U  is the phase space of 
kinetic equation (1)). 

 3) The differentiation formulas (26) 
with given coeffi cients  q  i ( z ,  y ). 

 The  grid invariance equation  has the 
form of an inclusion: 

  J ( F ( y )) D  T  y    for every  y  D  G , 

 or the form of an equation: 

 (1 –  P  y ) J ( F ( y )) = 0 for every  y  D  G , 

 where  P  y    is the thermodynamic projector 
(17). 

 The grid differentiation formula (26) is 
needed, in the fi rst place, to establish the 
tangent space  T  y , and the null space of the 
thermodynamic projector  P  y    in each node. 
It is important to realize that the locality of 
the construction of the thermodynamic 
projector makes this possible without a 
global parametrization. 

 Let  x = F ( y ) be the location of the grid’s 
node  y  immersed into  U . We have the set of 
tangent vectors  g  i ( x ), defi ned in  x  (28), 
(29). Thus, the tangent space  T  y    is defi ned 
by (27). Also, we have the entropy function 
 S ( x ), the linear functional  D  x  S  |  x , and the 
subspace  T  0  y  =  T  y      � ker  D  x  S  |  x    in  T  y . Let 
 T  0  y   0   T  y . In this case we have a vector  e  y  D 
 T  y , orthogonal to  T  0  y ,  D  x  S  |  x (  e   y ) = 1. 

 Then the thermodynamic projector is 
defi ned as: 

  P  y     �    =  P  0  y     �    +   e   y  D  x  S  |  x      �    ,                                       (30) 

 where  P  0  y    is the orthogonal projector on 
 T  0  y    with respect to the entropic scalar 
product � | � x . 

 If  T  0  y  =  T  y , then the thermodynamic 
projector is the orthogonal projector on  T  y   
 with respect to the entropic scalar product 
� | � x   . 

 The general schema of solving the in-
variance equation (3) to optimize posi-
tions of the invariant grid nodes in space 
is the following: 

 0) The grid is initialized. For example, it 
is possible to use spectral decomposition 
of  (D2

xS)x  in the equilibrium. 
 1) Given some node positions, the tan-

gent vectors in every node of the grid (27) 
are calculated; at this stage the connectiv-
ity between nodes is used. 

 2) With set of tangent vectors calculated 
at the previous step, solve the invariance 
equation for every node  independently  and 
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calculate a shift   � y  of every node in the 
phase space; we propose two algorithms to 
calculate the shift:  the Newton method with 
incomplete linearization  and  the relaxation 
method  [see also  4–6, 8] . 

 3) Repeat steps 1 and 2 until some con-
vergence criterion will be fulfi lled: for ex-
ample, all shifts   � y  i ,  i  = 1, ...,  n  will be less 
than a predefi ned   �   conv . 

 4) Update the structure of the grid: for 
example, add new nodes and extend (ex-
trapolate) or refi ne (interpolate) the grid. 
Some strategies for this are described fur-
ther. 

 5) Repeat steps 1–4 until some criterion 
will be fulfi lled: typically, when the nodes 
reach the phase space boundary or the 
spectral gap is too small (see below). 

 The idea of the Newton method with in-
complete linearization is to use linear ap-
proximation of  J  in the vicinity of a grid 
node  y  (keeping the projector  P  fi xed). At 
the same time the node is shifted in the fast 
direction (in  y  + ker  P  y    affi ne subspace). 

 For the Newton method with incom-
plete linearization, the equations for calcu-
lation of the new node location  y  �  =  y  +   � y 
 are: {

Pyδy = 0
(1 − Py)(J(y) + DJ(y)δy) = 0.    (31)

 Here  DJ ( y ) is a matrix of derivatives of  J 
 evaluated at  y . Instead of  DJ ( y ) (especially 
in the regions that are far from the equilib-
rium) the symmetric operator   L   � ( y ) (20) 
can be used; this will provide better con-
vergence towards the ‘true’ invariant man-
ifold. 

 Equation (31) is a system of linear alge-
braic equations. In practice, it proves con-
venient to choose some orthonormal (with 
respect to the entropic scalar product) ba-
sis  b  i    in ker  P  y . Let  r =  dim(ker  P  y ). Then 
δy =

∑r
i=1 δibi,  and system (31) takes 

the form 
r∑

k=1

δk〈bi | DJ(y)bk〉y = −〈J(y) | bi〉y, i = 1...r.

 This is the system of linear equations 
for adjusting the node location according 
to the Newton method with incomplete 
linearization. We stress once again that one 
should use the entropic scalar products. 

 For the relaxation method, one needs to 
calculate the defect  �  y   =  (1 –  P  y ) J ( y ), and 
the relaxation step 

τ(y) = − 〈∆y|∆y〉y
〈∆y|DJ(y)∆y〉y .

 

       
(33)

 Then, the new node location  y  �    is comput-
ed as 

  y  �  =  y  +   �  ( y ) �  y .                           (34) 

 This is the equation for adjusting the 
node location according to the relaxation 
method. 

 4 Grid Construction Strategy 
 Of all the reasonable strategies of the in-

variant grid construction we consider here 
the following two: the  growing lump  and 
the  invariant fl ag . 

 4.1 Growing Lump 
 The construction is initialized from the 

equilibrium point  y* . The fi rst approxima-
tion is constructed as  F ( y* ) =  x* , and for 
some initial  V  0  ( V  y*   �   V  0 ) one has  F ( y ) = 
 x*  +  A ( y  –  y* ), where  A  is an isometric 
embedding (in the standard Euclidean 
metrics) of  R  n    in  E . 

 For this initial grid one makes a fi xed 
number of iterations of one of the methods 
chosen (Newton’s method with incomplete 
linearization or the relaxation method), 
and, after that, puts  V  1  = � y  D  V  0 

  V  y    and 
extends  F  from  V  0  onto  V  1  using the linear 
extrapolation, and the process continues. 
One of the possible variants of this proce-
dure is to extend the grid from  V  i    to  V  i  +1  
not after a fi xed number of iterations, but 
only after the invariance defect  �  y    be-
comes less than a given   �   (in a given norm, 
which is entropic, as a rule), for all nodes  
y  D  V  i . The lump stops growing after it 
reaches the boundary and is within a given 
accuracy  ��    ��  �     !    �  . 

 4.2 Invariant Flag 
In order to construct the invariant fl ag 

suffi ciently regular grids  G  are used, in 
which many points are located on the co-
ordinate lines, planes, etc. The standard 
fl ag  R  0   �   R  1   �   R  2   �  ...  �   R  n    (every next 
space is constructed by adding one more 
coordinate) is considered. It corresponds 
to a sequence of grids { y* }  �   G  1   �   G  2  ...  �  
 G  n , where { y* } =  R  0 , and  G  i    is a grid in  R  i .

 First,  y*  is mapped on  x*  and further 
 F ( y* ) =  x* . Then the invariant grid is con-
structed on  V  1   �   G  1  (up to the boundaries 
and within a given accuracy  ��    �  ��     !    �  ). Af-
ter that, the neighbourhoods in  G  2  are add-
ed to the points  V  1 , and the grid  V  2   �   G  2  is 
constructed (up to the boundaries and 
within a given accuracy) and so on, until 
 V  n   �   G  n    is constructed. 

 While constructing the k-th-order grid 
 V  k   �   G  k , the important role of the grids of 
lower dimension  V  0   �   ...   �   V  k–  1   �   V  k    
embedded in it is preserved. The point 
 F ( y* ) =  x*  (equilibrium) remains fi xed. 
For every  yDV  q    ( q  !  k ) the tangent vec-
tors  g  1 , ...,  g  q    are constructed, using the 
differentiation operators (26) on the 
whole  V  k . Using the tangent space  T  y  = 
 Lin { g  1 , ...,  g  q }, the projector  P  y    is construct-
ed, the iterations are applied and so on. All 
this is done in order to obtain a sequence 
of embedded invariant grids, given by the 
same map  F . 

 4.3 Boundaries Check and Entropy 
 We construct grid mapping of  F  onto a 

fi nite set  V  D  G . The technique of checking 
whether the grid still belongs to the phase 
space  U  of the kinetic system ( F ( V )  �   U ) 
is quite straightforward: all the points  y  D 
 V  are checked whether they belong to  U . If 
at the next iteration a point  F ( y ) leaves  U , 
then it is pulled inside by a homothety 
transform with the center in  x* . Since the 
entropy is a concave function, the ho-
mothety contraction with the center in  x* 
 increases the entropy monotonically. An-
other variant to cut off the points which 
leave  U . 
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 By construction (17), the kernel of the 
entropic projector is annulled by the en-
tropy differential. Thus, in the fi rst order, 
the steps in the Newton method with in-
complete linearization (31) as well as in the 
relaxation method (33) do not change the 
entropy. But if the steps are quite large, then 
the increase of the entropy may become es-
sential, and the points are returned on 
their entropy levels by the homothety con-
traction with the centre in the equilibrium 
point. 

 5 Instability of Fine Grids 
 When one reduces the grid spacing in 

order to refi ne the grid, then, once the grid 
spacing becomes small enough, one can 
face the problem of the  Courant instability 
  [14–16] . Instead of converging, at every it-
eration the grid becomes more and more 
entangled (see  fi g. 3 ). 

 A way to avoid such instability is well-
known. This is decreasing the time step. In 
our problem, instead of a true time step, we 
have a shift in the Newtonian direction. 
Formally, we can assign the value  h =  1 for 
one complete step in the Newtonian direc-

tion. Let us extend now the Newton meth-
od to arbitrary  h . For this, let us fi nd   � x = 
 � F ( y ) from (31), but update   � x  propor-
tionally to  h ; the new value of  x  n  +1  = 
 F  n  +1 ( y ) is equal to 

  F  n  +1 ( y ) =  F  n ( y ) +  h  n   � F  n ( y )            (35) 

 where  n  denotes the number of iteration. 
 One way to choose the step value  h  is to 

make it adaptive, by controlling the average 
value of the invariance defect  |  |  �  y   | |      at every 
step. Another way is the convergence con-
trol: then  	  h  n    plays a role of time. 

 Elimination of the Courant instability 
for the relaxation method can be done 
quite analogously. Everywhere the step  h  is 
maintained as large as it is possible with-
out running into convergence problems. 

 6 Analyticity and Effect of 
Superresolution 
 When constructing invariant grids, one 

must defi ne the differential operators (26) 
for every grid’s node. For calculating the 
differential operators in some point  y , an 
interpolation procedure in the neighbour-
hood of  y  is used. As a rule, it is an interpo-
lation by a low-order polynomial, which is 
constructed using the function values in 
the nodes belonging to the neighbourhood 
of  y  in  G . This approximation (using values 
in the nearest neighbourhood nodes) is 
natural for smooth functions. But we are 
looking for the  analytical  invariant mani-
fold. Analytical functions have a much 
more ‘rigid’ structure than the smooth 
ones. One can change a smooth function in 
the neighbourhood of any point in such a 
way that outside this neighbourhood the 
function will not change. In general, this is 
not possible for analytical functions: a 
kind of a ‘long-range’ effect takes place (as 
is well known). 

 The idea is to make use of this effect and 
to reconstruct some analytical function  f  G   
 using a function given on  G . There is one 
important requirement: if the values given 
on  G  are values of some function  f  which is 
analytical in a neighbourhood  U , then, if 

the  G  is refi ned ‘correctly’, one must have 
 f  G   ]   f  in  U . The sequence of reconstructed 
function  f  G    should converge to the ‘right’ 
function  f . 

 What is the ‘correct refi nement’? For 
smooth functions for the convergence 
 f  G   ]   f  it is necessary and suffi cient that, in 
the course of refi nement,  G  would approx-
imate the whole  U  with arbitrary accuracy. 
For analytical functions it is necessary 
only that, under the refi nement,  G  would 
approximate some uniqueness set  A   �   U . 
A subset  A   �   U  is called  uniqueness set  in 
 U  if for analytical functions in  U  ψ   and φ    
 from   ψ   |  A   {    φ   |  A    it follows   ψ    {    φ  . Suppose 
we have a sequence of grids  G , each follow-
ing one is fi ner than the previous one, 
which approximates a set  A . For smooth 
functions using function values defi ned on 
the grids one can reconstruct the function 
in  A . For analytical functions, if the analy-
ticity domain  U  is known, and  A  is a 
uniqueness set in  U , then one can recon-
struct the function in  U . The set  U  can be 
essentially bigger than  A ; because of this 
such an extension was named as  superreso-
lution effect   [17] . There exist formulas for 
construction of analytical functions  f  G    for 
different domains  U , uniqueness sets  A   �  
 U  and for different ways of discrete approx-
imation of  A  by a sequence of refi ned grids 
 G   [17] . Here we provide only one Car-
leman’s formula which is the most appro-
priate for our purposes. 

 Let domain  U = Qn
σ ⊂ Cn  be a pro-

duct of strips  Q  
     �   C ,  Q  
  = { z  | Im z   !    
  }. 
We shall construct functions holomorphic 
in  Qn

σ.  This is effectively equivalent to the 
construction of real analytical functions  f 
 in the whole  R  n    with a condition on the 
convergence radius  r ( x ) of the Taylor series 
for  f  as a function of each coordinate:  
r ( x )  6    
   in every point  x  D  R  n . 

 The sequence of refi ned grids is con-
structed as follows: let for every  l =  1, ...,  n 
 a fi nite sequence of distinct points  N  l     �   Q
     
 be defi ned: 

  N  l   =  { x  lj  |   j  = 1,2,3...},  x  lj     0   x  li    for  i   0   j        (36) 

Iteration 1
Iteration 2
Iteration 3
Iteration 4

  Fig. 3.  Grid instability. For small grid steps ap-
proximations in the calculation of grid deriva-
tives lead to the grid instability effect. Several 
successive iterations of the algorithm with-
out adaptation of the time step are shown 
that lead to undesirable ‘oscillations’, which 
eventually destroy the grid starting from one 
of its ends. 
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 The countable uniqueness set  A , which 
is approximated by a sequence of refi ned 
grids, has the form: 

  A  =  N  1   !   N  2   !    ...    !   N  n  
           = {( x  1  i  1 

,  x  2  i  2 
, ...,  x  ni n  ) |  i  1, ...,   n  = 1,2,3, ...} 

                     (37)

 The grid  G  m    is defi ned as the product of 
initial fragments  N  l    of length  m : 

  G  m  = {( x  1  i  1 
,  x  2  i  2 

 ...  x  ni  n 
) | 1  ̂    i  1, ...,  n   ̂    m }      (38) 

 Let us denote  �  = 2  
  /  �   (  
   is a half-
width of the strip  Q
   ). The key role in the 
construction of the Carleman formula is 
played by the functional  ωλ

m(u, p, l)  of 3 
variables:  u ∈ U = Qn

σ,   p  is an integer, 
1  ̂    p   ̂    m ,  l  is an integer, 1  ̂    p   ̂    n . 
Further  u  will be the coordinate value at the 
point where the extrapolation is calculated, 
 l  will be the coordinate number, and  p  will 
be an element of multi-index { i  1 , ...,  i  n }   for 
the point ( x  1  i  1 

,  x  2  i  2 
, ...,  x  ni  n 

) D  G : 

ωλ
m(u, p, l) =

(eλxlp + eλx̄lp)(eλu − eλxlp)
λ(eλu + eλx̄lp)(u − xlp)eλxlp

×
m∏

j=1j �=p

(eλxlp + eλx̄lj )(eλu − eλxlj )
(eλxlp − eλxlj )(eλu + eλx̄lj )

       (39)

 For real-valued  x  pk    formula (39) sim-
plifi es: 

ωλ
m(u, p, l) = 2

eλu − eλxlp

λ(eλu + eλxlp)(u − xlp)
×

m∏

j=1j �=p

(eλxlp + eλxlj )(eλu − eλxlj )
(eλxlp − eλxlj )(eλu + eλxlj )

       (40)

 The Carleman formula for extrapola-
tion from  G  M    on  U = Qn

σ (σ = πλ/2) 
 has the form ( z  = ( z  1 , ...,  z  n )): 

fm(z) =
m∑

k1,...,kn=1

f(xk)
n∏

j=1

ωλ
m(zj , kj , j),

       (41)

 where  k = k  1 , ...,  k  n ,  x  k  = ( x  1  k  1 
,   x  2  k  2 

, ...,  x  nk n  ). 

 There exists a theorem  [17] : 

If f ∈ H2(Qn
σ), then f(z) =

limm→∞fm(z), where H2(Qn
σ)

is the Hardy class of holomorphic
in Qn

σ functions. 
 

 It is useful to present the asymptotics of 
(41) for large  | Re z  j  | . For this purpose, we 
shall consider the asymptotics of (41) for 
large  | Re u  | : 

|ωλ
m(u, p, l)| =

∣∣∣∣
2
λu

m∏

j=1j �=p

eλxlp + eλxlj

eλxlp − eλxlj

∣∣∣∣ + o(|Reu|−1).

       (42)

 From the formula (41) one can see that 
for the fi nite  m  and  | Re z  j  |     ]  G   function 
 |  f  m ( z ) |    behaves like  const     j     |  z  j  | 

 –1 . 
 This property (zero asymptotics) must 

be taken into account when using formula 
(41). When constructing invariant mani-
folds  F ( W ), it is natural to use (41) not for 
the immersion  F ( y ), but for the deviation 
of  F ( y ) from some analytical ansatz  F  0 ( y ) 
 [18–20] . 

 The analytical ansatz  F  0 ( y ) can be ob-
tained using Taylor series, just as in the Ly-
apunov auxiliary theorem  [21] . Another 
variant is to use Taylor series for the con-
struction of Pade approximations. 

 It is natural to use approximations (41) 
in terms of dual variables as well, since 
there exists for them (as the examples 
demonstrate) a simple and effective linear 
ansatz for the invariant manifold. This is 
the slow invariant subspace  E  slow  of the op-
erator of linearized system (1) in dual vari-
ables at the equilibrium point. This invari-
ant subspace corresponds to the set of 
‘slow’ eigenvalues (with small  | Re  �   | , 
Re �    !   0). In the space of concentrations 
this invariant subspace is the quasi-equi-
librium manifold. It consists of the maxi-
mum entropy points on the affi ne mani-
folds of the form  x  +  E  fast , where  E  fast  is the 
‘fast’ invariant subspace of the operator of 
the linearized system (1) at the equilibri-
um point. It corresponds to the ‘fast’ eigen-
values (large  | Re  �   | , Re �    !   0). 

 Carleman’s formulas can be useful for 
the invariant grid construction in two plac-

es: fi rst, for the defi nition of the grid dif-
ferential operators (26), and second, for the 
analytical continuation of the manifold 
from the grid. 

 7 Example: Two-Step 
Catalytic Reaction 
 Let us consider a two-step four-compo-

nent reaction with one catalyst  A 2 (the Mi-
chaelis-Menten mechanism, see  fi g. 1 a): 

  A  1  +  A  2   }   A  3   }   A  2  +  A  4 .                                     (43) 

 We assume the Lyapunov function of 
the form 

S = −G = −
4∑

i=1

ci[ln(ci/ceq
i ) − 1].

 
The kinetic equation for the four-com-

ponent vector of concentrations,  c =  ( c  1 ,  c  2 ,  
c  3 ,  c  4 ), has the form 

ċ = γ1W1 + γ2W2.      (44)

 Here   �   1,2  are stoichiometric vectors, 

   �   1  = (–1, –1, 1, 0),      �   2  = (0, 1, –1, 1),           (45) 

 while functions  W  1,2  are reaction rates: 

W1 = k+
1 c1c2 − k−

1 c3, W2 = k+
2 c3 − k−

2 c2c4.

 Here   k±1,2 are reaction rate constants. The 
system under consideration has two con-
servation laws, 

  c  1  +  c  3  +  c  4  =  B  1 ,      c  2  +  c  3  =  B  2 ,                        (47) 

 or �  b   1,2 ,   c  �  = B  1,2 , where   b   1  = (1, 0, 1, 1) and 
  b   2  = (0, 1,   1, 0). The non-linear system (43) 
is effectively 2-dimensional, and we con-
sider a 1-dimensional reduced descrip-
tion. For our example, we chose the follow-
ing set of parameters: 

k+
1 = 0.3, k−

1 = 0.15, k+
2 = 0.8, k−

2 = 2.0;
ceq
1 = 0.5, ceq

2 = 0.1, ceq
3 = 0.1, ceq

4 = 0.4;
B1 = 1.0, B2 = 0.2  

       
(48)

 The 1-dimensional invariant grid is 
shown in  fi gure 4  in the ( c  1 , c  4 , c  3 ) coordi-
nates. The grid was constructed by the 
growing lump method, as described above. 
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We used Newton iterations to adjust the 
nodes. The grid was grown up to the 
boundaries of the phase space. 

 The grid in this example is a 1-dimen-
sional ordered sequence { x  1 , ...,  x  n }. 
The grid derivatives for calculating the 
tangent vectors  g  were taken as  g ( x  i ) = 
( x  i  +1  –  x  i  –1 )/ |    |  x  i  +1  –  x  i  –1  |  |      for the internal 
nodes, and  g ( x  1 ) = ( x  1  –  x  2 )/ |  |  x  1  –  x  2  |  |   , 
 g ( x  n ) = ( x  n  –  x  n–1 )/ |  |    x  n  –  x  n  –1  |  |    for the 
grid’s boundaries. 

 Close to the phase space boundaries we 
had to apply an adaptive algorithm for 
choosing the time step  h : if, after the next 
growing step (adding new nodes to the 
grid and after completing  N =  20 Newto-
nian steps), the grid did not converge, then 
we chose a new step size  h  n  +1  =  h  n /2 and 
recalculate the grid. The fi nal (minimal) 
value for  h  was  h   ;    0.001. 

 The location of the nodes was parame-
trized with the entropic distance to the 
equilibrium point measured in the qua-
dratic metrics given by the matrix   H   c   =  
– |  |    F  2   S (  c  )/ Fc  i   Fc  j  |  |      in the equilibrium  c  eq . It 
means that every node is located on a 
sphere in this metrics with a given radius, 
which increases linearly with the number 
of the node. In fi gure 4 the step of the in-

crease is chosen to be 0.05. Thus, the fi rst 
node is at the distance of 0.05 from the 
equilibrium, the second is at the distance 
of 0.10 and so on.  Figure 5  shows several 
important quantities which facilitate the 
understanding of the object (invariant 
grid) extracted. The sign on the x-axis of 
the graphs in  fi gure 5  is meaningless since 
the distance is always positive, but in this 

situation it indicates two possible direc-
tions from the equilibrium point. 

  Figure 5 a, b represents the slow 1-di-
mensional component of the dynamics of 
the system. Given any initial condition, the 
system quickly fi nds the corresponding 
point on the manifold and starting from 
this point the dynamics is given by part of 
the graph in  fi gure 5 a, b. 
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  Fig. 4.  One-dimensional invariant grid (cir-
cles, bold line) for the 2-dimensional chemi-
cal system. Projection into the 3-dimensional 
space of c1, c4, c3, concentrations. The tra-
jectories of the system in the phase space 
are shown by lines. The equilibrium point is 
marked by the square. The system quickly 
reaches the grid and further moves along it. 

  Fig. 5.  One-dimensional invariant grid for the 2-dimensional chemi-
cal system.  a  Values of the concentrations along the grid.  b  Values 
of the entropy and the entropy production (– dG / dt ) along the grid.  
c  Ratio of the relaxation times ‘towards’ and ‘along’ the manifold. The 
node positions are parametrized with entropic distance measured in 
the quadratic metrics iven by   H   c  = –   ll F 2  S ( c )/F c  i  F c  j   ll      in the equilibrium 
 c  eq . Entropic coordinate equal to zero corresponds to the equilibrium. 
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 One of the useful quantities is shown on 
the  fi gure 5 c. It is the relation between the 
relaxation times ‘toward’ and ‘along’ the 
grid (  �   2 /  �   1 , where   �   1 ,  �   2  are the smallest 
and the next smallest by absolute value 
non-zero eigenvalue of the system, sym-
metrically linearized at the point of the 
grid node). The fi gure demonstrates that 
the system is very stiff close to the equilib-
rium point (  �   1  and   �   2  are well separated 
from each other), and becomes less stiff 
(by order of magnitude) near the bound-
ary. This leads to the conclusion that the 
1-dimensional reduced model is more ad-
equate in the neighbourhood of the equi-
librium where fast and slow motions are 
separated by two orders of magnitude. On 
the end-points of the grid the 1-dimen-
sional reduction ceases to be well-de-
fi ned. 

 8 Example: Model Hydrogen 
Burning Reaction 
 In this section we consider a more com-

plicated example (see  fi g. 1 b), where the 
concentration space is 6-dimensional, 
while the system is 4-dimensional. We con-
struct an invariant fl ag which consists of 
1- and 2-dimensional invariant mani-
folds. 

 We consider a chemical system with six 
species called  H  2  (hydrogen),  O  2  (oxygen), 
 H  2  O  (water),  H ,  O ,  OH  (radicals) (see  fi g. 1 ). 
We assume the Lyapunov function of the 
form  S = –G = 

−∑6
i=1 ci[ln(ci/ceq

i )−1].

 The subset of the hydrogen burning reac-
tion and corresponding (direct) rate con-
stants were taken as: 

1. H2 ↔ 2H k+
1 = 2

2. O2 ↔ 2O k+
2 = 1

3. H2O ↔ H + OH k+
3 = 1

4. H2 + O ↔ H + OH k+
4 = 103

5. O2 + H ↔ O + OH k+
5 = 103

6. H2 + O ↔ H2O k+
6 = 102

       (49)

 

The conservation laws are: 

 2 c  H  2 
 + 2 c  H  2  O  +  c  H  +  c  OH  =  b  H  

 2 c  O  2 
 +  c  H  2  O  +  c  O  +  c  OH  =  b  O                   (50) 

 For parameter values we took  b  H   =  2, 
 b  O   =  1, and the equilibrium point: 

ceq
H2

= 0.27 ceq
O2

= 0.135

ceq
H2O = 0.7 ceq

H = 0.05

ceq
O = 0.02 ceq

OH = 0.01       (51)

 Other rate constants    k
_
i =  1..6 were cal-

culated from  c  eq  value and  k+
i .  For this sys-

tem the stoichiometric vectors are: 

         �   1  = (–1,0,0,2,0,0)            �   2  = (0, –1,0,0,2,0) 
   �   3  = (0,0, –1,1,0,1)           �   4  = (–1,0,0,1, –1,1)
    �   5  = (0, –1,0, –1,1,1)        �   6  = (–1,0,1,0, –1,0) 

 The system under consideration is fi cti-
tious in the sense that the subset of equa-
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  Fig. 6.  One-dimensional invariant grid for model hydrogen burning reac-
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tions corresponds to the simplifi ed picture 
of this chemical process and the rate con-
stants do not correspond to any experi-
mentally measured quantities, rather they 
refl ect only orders of magnitudes relevant 
real-world systems. In that sense we con-
sider here a qualitative model system, 
which allows us to illustrate the invariant 
grids method. Nevertheless, modelling of 
more realistic systems differs only in the 

number of species and equations. This 
leads, of course, to computationally harder 
problems, but diffi culties are not crucial. 

  Figure 6 a presents a 1-dimensional in-
variant grid constructed for the system. 
 Figure 6 b demonstrates the reduced dy-
namics along the manifold (for the expla-
nation of the meaning of the  x -coordinate, 
see the previous subsection). In  fi gure 6 c 
the three smallest non-zero eigenvalues by 

the absolute value of the symmetrically 
linearized Jacobian matrix of the system 
are shown. One can see that the two small-
est eigenvalues almost interchange on one 
of the grid ends. This means that the 1-di-
mensional ‘slow’ manifold faces defi nite 
problems in this region, it is just not well 
defi ned there. In practice, it means that one 
has to use at least a 2-dimensional grids 
there. 

  Figure 7 a gives a view of the 2-dimen-
sional invariant grid, constructed for the 
system, using the ‘invariant fl ag’ strategy. 
The grid was raised starting from the 1-di-
mensional grid constructed at the previ-
ous step. At the fi rst iteration for every 
node of the initial grid, two nodes (and two 
edges) were added. The direction of the 
step was chosen as the direction of the ei-
genvector of the matrix  A  sym    (at the point 
of the node), corresponding to the second 
‘slowest’ direction. The value of the step 
was chosen to be   �   = 0.05 in terms of en-
tropic distance. After several Newton’s it-
erations done until convergence was 
reached, new nodes were added in the di-
rection ‘orthogonal’ to the 1-dimensional 
grid. This time it was done by linear ex-
trapolation of the grid on the same step   
�   = 0.05. Once some new nodes become 
one or several negative coordinates (the 
grid reaches the boundaries) they were cut 
off. If a new node has only one edge, con-
necting it to the grid, it was excluded (since 
it was impossible to calculate 2-dimen-
sional tangent space for this node). The 
process continued until the expansion was 
possible (the ultimate state is when every 
new node had to be cut off). 

 The method for calculating tangent vec-
tors for this regular rectangular 2-dimen-
sional grid was chosen to be quite simple. 
The grid consists of  rows , which are co-ori-
ented by construction to the initial 1-di-
mensional grid, and  columns  that consist 
of the adjacent nodes in the neighbouring 
rows. The direction of the columns corre-
sponds to the second slowest direction 
along the grid. Then, every row and col-

a 0.05 0.1 0.15
0.02

0.04

0.06

0.08

0.01

0.02

0.03

0.04

0.05

0.06

H

O

H
O

b -4

-2

0

2

-4
-3

-2
-1

0

1

1.5

2

2.5

3

3.5

weight 1

weight 2

3
t

h
gi

e
w

  Fig. 7.  Two-dimensional invariant grid for the model hydrogen burning 
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umn are considered as a 1-dimensional 
grid, and the corresponding tangent vec-
tors are calculated as it was described be-
fore: 

  g  row ( x  k  ,  i ) = ( x  k  ,  i  +1  –  x  k  ,  i  –1 )/ ||      x  k  ,  i  +1  –  x  k  ,  i  –1  ||    

 for the internal nodes and 

  g  row ( x  k  ,1 ) = ( x  k  ,1  –  x  k  ,2 )/||     x  k  ,1  –  x  k  ,2  ||     ,  g  row ( x  k  ,  n k  ) 
      = ( x  k  ,  n k   –  x  k  ,  n k   –1 )/ ||      x  k  ,  n k   –  x  k  ,  n  k  –1  ||      

 for the nodes which are close to the grid’s 
edges. Here  x  k  ,  i  denotes the vector of the 
node in the  k -th row,  i -th column;  n  k    is the 
number of nodes in the  k -th row. Second 
tangent vector  g  col ( x  k  ,  i ) is calculated anal-
ogously. In practice, it proves convenient to 
orthogonalize  g  row ( x  k  ,  i ) and  g  col ( x  k  ,  i ). 

 9 Invariant Grid as a Tool 
for Visualization of Dynamic 
System Properties 
 The usual way of dealing with system 

(1) is to defi ne some initial conditions and 
solve the equation for a given time interval. 
This gives us one particular trajectory of 
the system. Can we have a look at the glob-
al picture of all possible trajectories or in 
other words can we visualize the vector 
fi eld in  R  N , defi ned by   J  ( x )? It would be 
possible if one had two or three species in 
system (1). Invariant manifolds and their 
grid representation allow to do it for high-
er dimensions, thus they can serve as a 
data visualization tool. The situation is 
somewhat close in spirit to data visualiza-
tion using principal manifolds [for exam-
ple, see  23]  where one uses 2-dimensional 
manifolds to visualize a fi nite set of points. 
Invariant manifolds make it possible to vi-
sualize the global system dynamics on the 
non-linear manifold of slow motions (i.e., 
in the space which corresponds to the ef-
fects observed in a real-life experiment). 

 In this section we demonstrate global 
system dynamics visualization on the 
model hydrogen burning reaction. Since 
the phase space is 4-dimensional, it is im-
possible to visualize the grid in one of the 
coordinate 3-dimensional views, as it was 

done in the previous subsection. To facili-
tate visualization one can utilize tradition-
al methods of multidimensional data visu-
alization. Here we make use of the princi-
pal components analysis [see, for example, 
 22] , which constructs a 3-dimensional lin-
ear subspace with maximal dispersion of 
the orthogonally projected data (grid 
nodes in our case). In other words, the 
method of principal components con-
structs in a multidimensional space a 3-di-
mensional box such that the grid can be 
placed maximally tightly inside the box (in 
the mean square distance meaning). After 
projection of the grid nodes into this space, 
we get more or less adequate representa-
tion of the 2-dimensional grid embedded 
into the 6-dimensional concentrations 
space ( fi g. 7 b). The disadvantage of the ap-

proach is that the axes now do not bear any 
explicit physical meaning, they are just 
some linear combinations of the concen-
trations. 

 One attractive feature of 2-dimensional 
grids is the possibility to use them as a 
screen, on which one can display different 
functions  f  (  c  ) defi ned in the concentra-
tions space. This technology was exploited 
widely in the non-linear data analysis by 
the elastic maps method  [23, 24] . The idea 
is to ‘unfold’ the grid on a plane (to present 
it in the 2-dimensional space, where the 
nodes form a regular lattice). In other 
words, we are going to work in the internal 
coordinates of the grid. In our case, the fi rst 
internal coordinate (let us call it  s  1 ) corre-
sponds to the direction, co-oriented with 
the 1-dimensional invariant grid, the sec-

-1.5 -1 -0.5 0 0.5 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1
0.1

0.1

0.2
0 .2

2.
0

3.
0

3.
0

0.
3

0.
4

0.
4

0.
4

0.
5

0 .
5

0
5.

0.
6

0.
6

0.
6

0.
7

0.
7

0.
8

.0
8

0.
9

0.
9

-1.5 -1 -0.5 0 0.5 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.01 0.01
0.01

0.02 0.02
0.02

0.03
0 0. 3

0.03

0.04
0.04

0.04

0.05

0.05

0.05

0.06

0. 60 0.07

a   Concentration    H      2 b    Concentration O

-1.5 -1 -0.5 0 0.5 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

10
.0

0.01

0 0. 1

0.
02

0.
02

0.02

0.03

.0
03

0.
03

0.03

0.03
0.040.05

-1.5 -1 -0.5 0 0.5 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.02 0.02

0.04 0.04 0.04

0.06 0.06
0.06

0.08
0.08

0.08

0.1
0 1.

0.1

0.12
0.12

0.12

0.14
0.14 0.14

0.16

c   Concentration OH d    Concentration H

  Fig. 8.  Two-dimensional invariant grid as a screen for visualizing different func-
tions defi ned in the concentration space. The coordinate axes are entropic dis-
tances (see text for explanations) along the fi rst and the second slowest directions 
on the grid. The corresponding 1-dimensional invariant grid is denoted by the bold 
line, the equilibrium is denoted by the square. 



124  Complexus 2004–05;2:110–127  Method of Invariant Grid 

ond one (let us call it  s  2 ) corresponds to the 
second slow direction. By the construction, 
the coordinate line  s  2  = 0 corresponds to 
the 1-dimensional invariant grid. Units of 
 s  1  and  s  2  is the entropic distance. 

 Every grid node has two internal coor-
dinates ( s  1 ,  s  2 ) and, simultaneously, corre-
sponds to a vector in the concentration 
space. This allows us to map any function 
 f  (  c  ) from the multidimensional concentra-
tion space to the 2-dimensional space of 
the grid. This mapping is defi ned in a fi nite 
number of points (grid nodes), and can be 
interpolated (linearly, in the simplest case) 
between them. Using  colouring  and  isolines 
 one can visualize the values of the function 
in the neighbourhood of the invariant 
manifold. This is meaningful, since, by the 
defi nition, the system spends most of the 
time in the vicinity of the invariant mani-
fold; thus, one can visualize the behaviour 
of the system. As a result of applying this 
technology, one obtains a set of colour il-
lustrations (a stack of information layers), 
put onto the grid as a map. This enables 
applying the whole family of the well-de-
veloped methods of working with the stack 
of information layers, such as the  geo-
graphical information systems  methods. 

 Briefl y, this technique of the visualiza-
tion is a useful tool for the understanding 
of dynamical systems. It makes it possible 
to see many different scenarios of the sys-
tem behaviour simultaneously, together 
with different system’s characteristics. 

 Let us use the invariant grids for the 
model hydrogen burning system as a 
screen for visualization. The simplest func-
tions to visualize are the coordinates:  
c  i (  c  ) =  c  i . In  fi gure 8  we displayed four co-
lourings, corresponding to the four arbi-
trarily chosen concentration functions (of 
 H  2 ,  O ,  H  and  OH ;  fi g. 8 a–d). The qualitative 
conclusion that can be made from the 
graphs is that, for example, the concentra-
tion of  H  2  practically does not change dur-
ing the fi rst fast motion (towards the 1-di-
mensional grid) and, then, gradually 
changes to the equilibrium value (the  H  2  

coordinate is ‘slow’). The  O  coordinate rep-
resents the opposite case; it is the ‘fast’ co-
ordinate which changes quickly (on the 
fi rst stage of the motion) to the almost 
equilibrium value, and it almost does not 
change after that. Basically, the slopes of 
the coordinate isolines give some impres-
sion of how ‘slow’ a given concentration is. 
 Figure 8 c shows an interesting behaviour 
of the  OH  concentration. Close to the 1-di-
mensional grid it behaves like a ‘slow coor-
dinate’, but there is a region on the map 
where it has a clear ‘fast’ behaviour (middle 
bottom of the graph). 

 The next two functions which can be vi-
sualized are the entropy  S  and the entropy 

production  σ(c) = −dG/dt(c) =
∑

i ln(ci/ceq
i )ċi.  They are shown in  fi gure 

9 a and b. 
 Finally, we visualize the relation be-

tween the relaxation times of the fast mo-
tion towards the 2-dimensional grid and 
the slow motion along it. This is given in 
 fi gure 9 c. This picture allows us to draw the 
conclusion that a 2-dimensional consider-
ation can be appropriate for the system (es-
pecially in the ‘high  H  2 , high  O ’ region), 
since the relaxation times ‘towards’ and 
‘along’ the grid are well separated. One can 
compare this to  fi gure 9 d, where the rela-
tion between relaxation times towards and 
along the 1-dimensional grid is shown. 
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  Fig. 9.  Two-dimensional invariant grid as a screen for visualizing different func-
tions defi ned in the concentration space. The coordinate axes are entropic dis-
tances (see text for explanations) along the fi rst and the second slowest directions 
on the grid. The corresponding 1-dimensional invariant grid is denoted by the bold 
line, the equilibrium is denoted by the square. 
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 10 Invariant Manifolds for 
Open Systems 
 10.1 Zero-Order Approximation 
 Let the initial dissipative system (1) be 

‘spoiled’ by an additional term (‘external 
vector fi eld’  J  ex ( x ,  t )): 

       
(53)

dx

dt
= J(x) + Jex(x, t), x ⊂ U.

 For this new system the entropy does 
not increase everywhere. In the new sys-
tem (53) different dynamic effects are pos-
sible, such as a non-uniqueness of station-
ary states, auto-oscillations, etc. The ‘iner-
tial manifold’ effect is well-known: 
solutions of (53) approach some relatively 
low-dimensional manifold on which all 
the non-trivial dynamics takes place  [25–
27] . 

 It is natural to expect that the inertial 
manifold of the system (53) is located 
somewhere close to the slow manifold of 
the initial dissipative system (1). This hy-
pothesis has the following basis. Suppose 
that the vector fi eld  J  ex ( x ,  t ) is suffi ciently 
small. Let us introduce, for example, a 
small parameter   �    1  0, and consider   
� J  ex ( x ,  t ) instead of  J  ex ( x ,  t ). Let us assume 
that for system (1) a separation of motions 
into ‘slow’ and ‘fast’ takes place. In this case, 
there exists such an interval of positive   �  
 that   � J  ex ( x ,  t ) is comparable to  J  only in a 
small neighbourhood of the given slow 
motion manifold of system (1). Outside 
this neighbourhood,   � J  ex ( x ,  t ) is negligibly 
small in comparison with  J  and only neg-
ligibly infl uences the motion (for this state-
ment to be true, it is important that system 
(1) is dissipative and every solution comes 
in fi nite time to a small neighbourhood of 
the given slow manifold). 

 Precisely this perspective on system 
(53) allows to exploit slow invariant mani-
folds constructed for the dissipative sys-
tem (1) as the ansatz and the zero-order 
approximation in a construction of the in-
ertial manifold of the open system (53). In 
the zero-order approximation, the right 
part of the equation (53) is simply project-

ed onto the tangent space of the slow man-
ifold. 

 The choice of the projector is deter-
mined by the motion separation which was 
described above: fast motion is taken from 
the dissipative system (1). A projector 
which is suitable for all dissipative systems 
with given entropy function is unique. It is 
constructed in the following way. Let a 
point  x  D  U  be defi ned and some vector 
space  T , on which one needs to construct a 
projection ( T  is the tangent space to the 
slow manifold at the point  x ). We introduce 
the entropic scalar product ���   x : 

〈a | b〉x = −(a, D2
xS(b)).     (54)

 Let us consider  T  0  that is a subspace of 
 T  and which is annulled by the differential 
 S  at the point  x . 

  T  0  = { a  D  T    |D  x  S ( a ) = 0}                       (55) 

 If  T  0  =  T , then the thermodynamic projec-
tor is the orthogonal projector on  T  with 
respect to the entropic scalar product ���   x   . 
Suppose that  T  0   0   T . Let  e  g  D  T ,  e  g  �  T  0  
with respect to the entropic scalar product 
���   x   , and  D  x  S ( e  g ) = 1. These conditions de-
fi ne vector  e  g    uniquely. 

 The projector onto  T  is defi ned by the 
formula 

  P ( J ) =  P  0 ( J ) +  e  g  D  x  s ( J )                      (56) 

 where  P  0  is the orthogonal projector onto 
 T  0  with respect to the entropic scalar prod-
uct ���  x  . For example, if  T  a fi nite-dimen-
sional space, then projector (56) is con-
structed in the following way. Let  e  1 , ...,  e  n   
 be a basis in  T , and for defi niteness,  
D  x  S ( e  1 )  0  0. 

 1) Let us construct a system of vectors 

  b  i  =  E  i  +1  –  �  i  e  1 , ( i  = 1, ...,  n  – 1),                   (57) 

 where   �   i   = D  x  S ( e  i  +1 )/ D  x  S ( e  1 ), and hence 
 D  x  S ( b  i ) = 0. Thus,  {bi}n−1

1   is a basis in 
 T  0 . 

 2) Let us orthogonalize  {bi}n−1
1   with 

respect to the entropic scalar product ���  x    
 (1). We thus derived an orthonormal with 
respect to ���  x     basis  {gi}n−1

1   in  T  0 . 

 3) We fi nd  e  g  D  T  from the conditions: 
 

� e  g  |  g  i � x  = 0, ( i  = 1, ...,  n  – 1),  D  x  S ( e  g ) = 1.    (58) 
 

 and, fi nally we get 

       
(59)P (J) =

n−1∑

i=1

gi〈gi | J〉x + egDxS(J).

 If  D  x  S ( T ) = 0, then the projector  P  is 
simply the orthogonal projector with re-
spect to the ���  x     scalar product. This is pos-
sible if  x  is the global maximum of entropy 
point (equilibrium). 

 Then 

       
(60)P (J) =

n∑

i=1

gi〈gi|J〉x, 〈gi|gj〉 = δij .

 
10.2 First-Order Approximation 
 Thermodynamic projector (56) defi nes 

a ‘slow and fast motion’ duality: if  T  is the 
tangent space of the slow motion manifold 
then  T =  im P , and ker P  is the plane of fast 
motions. Let us denote by  P  x    the projector 
at a point  x  of a given slow manifold. 

 The vector fi eld  J  ex ( x, t ) can be decom-
posed in two components: 

  J  ex ( x ,  t ) =  P  x  J  ex ( x ,  t ) + (1 –  P  x ) J  ex ( x ,  t ).        (61) 

 Let us denote  J  ex s   = P  x  J  ex ,  J  ex f  = 
(1 –  P  x ) J  ex . The slow component  J  ex s    gives 
a correction to the motion along the slow 
manifold. This is a zero-order approxima-
tion. The ‘fast’ component shifts the slow 
manifold in the fast motions plane. This 
shift changes  P  x  J  ex    accordingly. Consider-
ation of this effect gives a fi rst-order ap-
proximation. In order to fi nd it, let us re-
write the invariance equation taking  J  ex   
 into account: 

{
(1 − Px)(J(x + δx) + εJex(x, t)) = 0
Pxδx = 0

       (62)

 The fi rst iteration of the Newton meth-
od subject to incomplete linearization 
gives: 
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{
(1 − Px)(DxJ(δx) + εJex(x, t)) = 0
Pxδx = 0.

    
   (63)

(1 − Px)DxJ(1 − Px)J(δx) = −εJex(x, t).
  
       (64)

 Thus, we have derived a linear equation 
in the space ker P . The operator (1 –  P ) D  x  J 
(1 –  P ) is defi ned in this space. 

 Utilization of the self-adjoint lineariza-
tion instead of the traditional linearization 
 D  x  J  operator considerably simplifi es solv-
ing and studying equation (64). It is neces-
sary to take into account here that the pro-
jector  P  is a sum of the orthogonal projec-
tor with respect to the ���  x     scalar product 
and a projector of rank one. 

 Assume that the fi rst-order approxima-
tion equation (64) has been solved and the 
following function has been found: 

   �   1  x ( x ,   � J  ex   f ) = –[(1 –  P  x ) D  x  J (1 –  p  x )] –1   � J ex f ,                      
       (65) 

 where  D  x   J  is either the differential of  J  or 
symmetrized differential of  J  (20). 

 Let  x  be a point on the initial slow man-
ifold. At the point  x  +   � x ( x ,   � J  ex f ) the 
right-hand side of equation (53) in the 
fi rst-order approximation is given by 

  J ( x ) +   � J  ex ( x ,  t ) +  D  x  J (  � x ( x,  � J  ex f )).              (66) 

 Due to the fi rst-order approximation 
(66), the motion of a point projection onto 
the manifold is given by the following 
equation 

dx

dt
= Px(J(x) + εJex(x, t) + D

DxJ(δx(x, εJex f (x, t)))).    (67)
 

Note that, in equation (67), the vector 
fi eld  J ( x ) enters only in the form of a pro-
jection,  P  x  J ( x ). For the invariant slow man-
ifold it holds  P  x  J ( x ) =  J ( x ), but actually we 
always deal with approximately invariant 
manifolds; hence, it is necessary to use the 
projection  P  x  J  instead of  J  in (67). 

  Remark . The notion ‘projection of a 
point onto the manifold’ needs to be speci-
fi ed. For every point  x  of the slow invariant 
manifold  M  both the thermodynamic pro-

jector  P  x    (56) and the fast motions plane 
ker P  x  are defi ned. Let us defi ne a projector 
   of some neighbourhood of  M  onto  M  in 
the following way: 

   ( z ) =  x , if  P  x ( z  –  x ) = 0.                                   (68) 

 Qualitatively, it means that  z , after all 
fast motions took place, comes into a small 
neighbourhood of  x . Operation (56) is de-
fi ned uniquely in some small neighbour-
hood of the manifold  M . 

 A derivation of slow motion equations 
requires not only an assumption that   � J  ex   
 is small but it must be slow as well:  
d
dt(εJex) must be small too . 

 Further approximations for slow mo-
tions of system (53) can be obtained, tak-
ing into account the time derivatives of  J  ex . 
This is an alternative to the usage of the 
projection operator methods  [28] . 

 11 Conclusion 
 In this paper we presented a method for 

reducing the complexity in complex chem-
ical reaction networks using a consistent 
approach of constructing invariant mani-
fold for the system of kinetic equations. 
The method is applicable to the class of 
dissipative systems (with Lyapounov func-
tion) and can be extended to the case of 
open systems as well. 

 An attractive feature of the approach is 
its clear geometrical interpretation. The 
geometrical approach becomes more and 
more popular in applied model reduction: 
one constructs a slow approximate invari-
ant manifold, and dynamical equations on 
this manifold instead of an approximation 
of solutions to the initial equations. After 
that, the equations on the slow manifold 
can be studied separately, as well as the fast 
motion to this manifold (the initial layer 
problem  [29] ). 

 The notion of invariant grid may be 
useful beyond the chemical kinetics. This 
discrete invariant object can serve as a rep-
resentation of approximate slow invariant 
manifold, and as a screen (a map) for visu-
alization of different functions and prop-

erties. The problem of the grid correction 
is fully decomposed into the problems of 
the grid’s node correction which makes it 
open to effective parallel implementa-
tions. 

 The next step should be the implemen-
tation of the MIG for investigation of high-
dimensional systems ‘kinetics + trans-
port’. The asymptotic analysis of the meth-
ods of analytic continuation the manifold 
from the grid should lead to further devel-
opment of these methods and modifi ca-
tions of the Carleman formula. 
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