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Abstract

In this paper, we review the construction of low-dimensional manifolds of reduced description for equations of chemical kinetics from
the standpoint of the method of invariant manifold (MIM). The MIM is based on a formulation of the condition of invariance as an
equation, and its solution by Newton iterations. A review of existing alternative methods is extended by a thermodynamically consistent
version of the method of intrinsic low-dimensional manifolds. A grid-based version of the MIM is developed, and model extensions of
low-dimensional dynamics are described. Generalizations to open systems are suggested. The set of methods covered makes it possible
to e9ectively reduce description in chemical kinetics.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we present a general method of constructing
the reduced description for dissipative systems of reaction
kinetics. Our approach is based on the method of invariant
manifold which was developed at the end of the 1980s–early
1990s by Gorban and Karlin (1992a, b). Its realization for
a generic dissipative systems was discussed by Gorban and
Karlin (1994, 1996, 1996a); Gorban et al., 1996, 1999;
Gorban, Karlin, Ilg, and =Ottinger (2001a). This method was
applied to a set of problems of classical kinetic theory based
on the Boltzmann kinetic equation (Gorban & Karlin, 1994;
Karlin, Dukek, & Nonnenmacher, 1997; Karlin, Gorban,
Dukek, & Nonnenmacher, 1998). The method of invari-
ant manifold was successfully applied to a derivation of
the reduced description for kinetic equations of polymeric
solutions (Zmievskii, Karlin, & Deville, 2000). It has
also been tested on systems of chemical kinetics (Gorban,
Karlin, Zmievskii, & Dymova, 2000).

The goal of nonequilibrium statistical physics is the un-
derstanding of how a system with many degrees of free-
dom acquires a description with few degrees of freedom.
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This should lead to reliable methods of extracting the macro-
scopic description from a detailed microscopic description.

While this general problem is still far from the Gnal solu-
tion, it is reasonable to study simpliGed models, where, on
the one hand, a detailed description is accessible to numer-
ics, and on the other hand, analytical methods designed to
the solution of problems in real systems can be tested.

In this paper, we address the class of Gnite-dimensional
systems, well known from the theory of reaction kinetics.
These are equations governing a complex relaxation in per-
fectly stirred closed chemically active mixtures. The dis-
sipative properties of such systems are characterized by a
global convex Lyapunov functionG (thermodynamic poten-
tial) which implements the second law of thermodynamics:
as the time t tends to inGnity, the system reaches the unique
equilibrium state, while in the course of the transition the
Lyapunov function decreases monotonically.

Although the limiting behavior of the dissipative systems
just described is certainly very simple, there are still inter-
esting questions to be asked about it. One of these is closely
related to the above general problem of nonequilibrium sta-
tistical physics. Indeed, evidence of numerical integration
of such systems often demonstrates that the relaxation has
a certain geometrical structure in the phase space. Namely,
typical individual trajectories tend to manifolds of lower di-
mension, and further proceed to the equilibrium essentially
along these manifolds. Thus, such systems demonstrate a
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dimensional reduction, and therefore establish a more
macroscopic description after some time since the begin-
ning of the relaxation.

There are two intuitive ideas behind our approach, and
we shall now discuss them informally. The objects to be
considered below are manifolds (surfaces) � in the phase
space of the reaction kinetic system (the phase space is usu-
ally a convex polytope in a Gnite-dimensional real space).
The ‘ideal’ picture of the reduced description we have in
mind is as follows: a typical phase trajectory, c(t), where t
is the time and c is an element of the phase space, consists
of two pronounced segments. The Grst segment connects the
beginning of the trajectory, c(0), with a certain point, c(t1),
on the manifold � (rigorously speaking, we should think of
c(t1) not on � but in a small neighborhood of �, but this
is inessential for the ideal picture). The second segment be-
longs to � and connects the point c(t1) with the equilibrium
c eq = c(∞), c eq ∈�. Thus, the manifolds appearing in our
ideal picture are “patterns” formed by the segments of indi-
vidual trajectories, and the goal of the reduced description
is to “Glter out” this manifold.

There are two important features behind this ideal picture.
The Grst feature is the invariance of the manifold �: once
the individual trajectory has started on �, it does not leave
� anymore. The second feature is the projecting: the phase
points outside � will be projected onto �. Furthermore, the
dissipativity of the system provides an additional informa-
tion about this ideal picture: regardless of what happens on
the manifold �, the function G was decreasing along each
individual trajectory before it reached �. This ideal picture
is the guide to extract slow invariant manifolds.

One more point needs a clariGcation before going any
further. Low-dimensional invariant manifolds exist also for
systems with a more complicated dynamic behavior, so
why to study the invariant manifolds of slow motions for a
particular class of purely dissipative systems? The answer is
in the following: most of the physically signiGcant models
include non-dissipative components in the form of either a
conservative dynamics, or in the form of external forcing
or external Puxes. An example of the Grst kind is the free
Pight of particles on top of the dissipation-producing col-
lisions in the Boltzmann equation. For the second type of
example one can think of irreversible reactions among the
suggested stoichiometric mechanism (inverse processes are
so improbable that we discard them completely, thereby ef-
fectively “opening” the system to the remaining irreversible
Pux). For all such systems, the present method is appli-
cable almost without special reGnements, and bears the
signiGcance that invariant manifolds are constructed as a
“deformation” of the relevant manifolds of slow motion of
the purely dissipative dynamics. An example of this con-
struction for open systems is presented in Section 10. Till
then we focus on the purely dissipative case for the reason
just clariGed.

The paper is organized as follows. In Section 2, we re-
view the reaction kinetics (Section 2.1), and discuss the

main methods of model reduction in chemical kinetics
(Section 2.2). In particular, we present two general versions
of extending partially equilibrium manifolds to a single re-
laxation time model in the whole phase space, and develop
a thermodynamically consistent version of the intrinsic
low-dimensional manifold (ILDM) approach. In Section 3,
we introduce the method of invariant manifold in the way
appropriate to this class of nonequilibrium systems. In Sec-
tions 4 and 5, we give some details on the two relatively
independent parts of the method, the thermodynamic pro-
jector, and the iterations for solving the invariance equation.
We also introduce a general symmetric linearization proce-
dure for the invariance equation, and discuss its relevance
to the picture of decomposition of motions. In Section 6,
these two procedures are combined into an unique algo-
rithm. In Section 7, we demonstrate an illustrative example
of computations for a model catalytic reaction. In Section
8, we demonstrate how the thermodynamic projector is
constructed without the a priori parameterization of the
manifold. This result is essentially used in Section 9, where
we introduce a computationally e9ective grid-based method
to construct invariant manifolds. In Section 10, we describe
an extension of the method of invariant manifold to open
systems. Finally, results are discussed in Section 11.

2. Equations of chemical kinetics and their reduction

2.1. Outline of dissipative reaction kinetics

We begin with an outline of reaction kinetics (for details
see, e.g., the book of Yablonskii, Bykov, Gorban, & Elokhin,
1991). Let us consider a closed system with n chemical
species A1; : : : ;An, participating in a complex reaction. The
complex reaction is represented by the following stoichio-
metric mechanism:

�s1A1 + · · · + �snAn � �s1A1 + · · · + �snAn; (1)

where the index s = 1; : : : ; r enumerates the reaction steps,
and where the integers �si and �si are stoichiometric coeR-
cients. For each reaction step s, we introduce n–component
vectors �s and �s with components �si and �si. The notation
�s stands for the vector with integer components �si=�si−�si
(the stoichiometric vector). We adopt an abbreviated no-
tation for the standard scalar product of the n-component
vectors:

〈x; y〉 =
n∑
i=1

xiyi:

The system is described by the n-component concentra-
tion vector c, where the component ci¿ 0 represents the
concentration of the species Ai. Conservation laws impose
linear constraints on admissible vectors c (balances):

〈bi ; c〉 = Bi; i = 1; : : : ; l; (2)

where bi are Gxed and linearly independent vectors, and Bi
are given scalars. Let us denote as B the set of vectors which
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satisfy the conservation laws (2):

B = {c|〈b1; c〉 = B1; : : : ; 〈bl; c〉 = Bl}:
The phase space V of the system is the intersection of
the cone of n-dimensional vectors with nonnegative compo-
nents, with the set B, and dimV = d= n− l. In the sequel,
we term a vector c ∈V the state of the system. In addition,
we assume that each of the conservation laws is supported
by each elementary reaction step, that is

〈�s; bi〉 = 0; (3)

for each pair of vectors �s and bi.
Reaction kinetic equations describe variations of the states

in time. Given the stoichiometric mechanism (1), the reac-
tion kinetic equations read:

ċ = J(c); J(c) =
r∑

s=1

�sWs(c); (4)

where the overdot denotes the time derivative, and Ws is the
reaction rate function of the step s. In particular, the mass
action law suggests a polynomial form for the reaction rates:

Ws = k+
s

n∏
i=1

c�ii − k−s
n∏
i=1

c�ii ; (5)

where k+
s and k−s are the constants of the direct and of the

inverse reactions rates of the sth reaction step. The phase
space V is a positive-invariant of system (4): if c(0)∈V ,
then c(t)∈V for all the times t ¿ 0.

In the sequel, we assume that the kinetic equation (4) de-
scribes the evolution towards the unique equilibrium state,
c eq, in the interior of the phase spaceV . Furthermore, we as-
sume that there exists a strictly convex function G(c) which
decreases monotonically in time due to Eq. (4):

Ġ = 〈∇G(c); J(c)〉6 0: (6)

Here ∇G is the vector of partial derivatives @G=@ci, and the
convexity assumes that the n× n matrices

Hc = ‖@2G(c)=@ci@cj‖; (7)

are positive deGnite for all c ∈V . In addition, we assume
that the matrices (7) are invertible if c is taken in the interior
of the phase space.

The function G is the Lyapunov function of system (4),
and c eq is the point of global minimum of the function
G in the phase space V . Otherwise stated, the manifold
of equilibrium states c eq(B1; : : : ; Bl) is the solution to the
variational problem,

G → min for 〈bi ; c〉 = Bi; i = 1; : : : ; l: (8)

For each Gxed value of the conserved quantities Bi, the so-
lution is unique. In many cases, however, it is convenient to
consider the whole equilibrium manifold, keeping the con-
served quantities as parameters.

For example, for perfect systems in a constant volume un-
der a constant temperature, the Lyapunov function G reads:

G =
n∑
i=1

ci[ln(ci=c
eq
i ) − 1]: (9)

It is important to stress that c eq in Eq. (9) is an arbi-
trary equilibrium of the system, under arbitrary values of
the balances. In order to compute G(c), it is unnecessary to
calculate the speciGc equilibrium c eq which corresponds to
the initial state c. Moreover, for ideal systems, the function
G is constructed from the thermodynamic data of individual
species, and, as a result of this construction, it turns out that
it has the form of Eq. (9). Let us mention here the classical
formula for the free energy F = RTVG:

F = VRT
n∑
i=1

ci[(ln(ciVQ i) − 1) + Fint i(T )]; (10)

where V is the volume of the system, T is the temperature,
VQ i=N0(2�˝2=mikT )3=2 is the quantum volume of one mole
of the species Ai, N0 is the Avogadro number, mi is the mass
of a molecule of Ai, R=kN0, and Fint i(T ) is the free energy
of the internal degrees of freedom per mole of Ai.

Finally, we recall an important generalization of the mass
action law (5), known as the Marcelin–De Donder kinetic
function. This generalization was developed by Feinberg
(1972) based on ideas of the thermodynamic theory of
aRnity (De Donder & Van Rysselberghe, 1936). We use
the kinetic function suggested by Bykov, Gorban, and
Yablonskii (1982). Within this approach, the functions Ws

are constructed as follows: for a given strictly convex func-
tion G, and for a given stoichiometric mechanism (1), we
deGne the gain (+) and the loss (−) rates of the sth step,

W+
s = ’+

s exp[〈∇G; �s〉]; W−
s = ’−

s exp[〈∇G; �s〉];
(11)

where ’±
s ¿ 0 are kinetic factors. The Marcelin–De Donder

kinetic function reads: Ws =W+
s −W−

s , and the right-hand
side of the kinetic equation (4) becomes

J =
r∑

s=1

�s{’+
s exp[〈∇G; �s〉] − ’−

s exp[〈∇G; �s〉]}: (12)

For the Marcelin–De Donder reaction rate (11), the dissipa-
tion inequality (6) reads:

Ġ =
r∑

s=1

[〈∇G; �s〉 − 〈∇G; �s〉]

×{’+
s e

〈∇G;�s〉 − ’−
s e

〈∇G;�s〉}6 0: (13)

The kinetic factors ’±
s should satisfy certain conditions

in order to make valid the dissipation inequality (13). A
well-known suRcient condition is the detail balance:

’+
s = ’−

s ; (14)

other suRcient conditions are discussed in detail elsewhere
(Yablonskii et al., 1991; Gorban, 1984; Karlin, 1989, 1993).
For the function G of the form (9), the Marcelin–De
Donder equation casts into the more familiar mass action
law form (5).
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2.2. The problem of reduced description in chemical
kinetics

What does it mean, “to reduce the description of a
chemical system”? This means the following:

(1) To shorten the list of species. This, in turn, can be
achieved in two ways:
(i) To eliminate inessential components from the list;

(ii) To lump some of the species into integrated
components.

(2) To shorten the list of reactions. This also can be done
in several ways:
(i) To eliminate inessential reactions, those which do

not signiGcantly inPuence the reaction process;
(ii) To assume that some of the reactions “have been

already completed”, and that the equilibrium has
been reached along their paths (this leads to di-
mensional reduction because the rate constants of
the “completed” reactions are not used thereafter,
what one needs are equilibrium constants only).

(3) To decompose the motions into fast and slow, into
independent (almost-independent) and slaved, etc.
As the result of such a decomposition, the system
admits a study “in parts”. After that, results of this
study are combined into a joint picture. There are
several approaches which fall into this category: the
famous method of the quasi-steady state (QSS), pio-
neered by Bodenstein and Semenov and explored in
considerable detail by many authors, in particular, by
Bowen, Acrivos, and Oppenheim (1963); Chen
(1988); Segel and Slemrod (1989); Fraser (1988);
Roussel and Fraser (1990, 1991), and many others; the
quasi-equilibrium approximation (Orlov & Rozonoer,
1984; Gorban, 1984; Volpert & Hudjaev, 1985; Fraser,
1988; Karlin, 1989, 1993); methods of sensitivity anal-
ysis (Rabitz, Kramer, & Dacol, 1983; Lam & Goussis,
1994); methods based on the derivation of the so-called
intrinsic low-dimensional manifolds (ILDM, as sug-
gested by Maas & Pope, 1992). Our method of invari-
ant manifold (MIM, Gorban & Karlin, 1992, 1992a, b,
1994; Gorban et al., 2000, 2001a) also belongs to this
kind of methods.

Why reduce description in the times of supercomputers?
First, in order to gain understanding. In the process of

reducing the description one is often able to extract the es-
sential, and the mechanisms of the processes under study
become more transparent. Second, if one is given the de-
tailed description of the system, then one should be able also
to solve the initial-value problem for this system. But what
should one do in the case where the system is representing
just a point in a three-dimensional Pow? The problem of
reduction becomes particularly important for modeling the
spatially distributed physical and chemical processes. Third,
without reducing the kinetic model, it is impossible to con-

struct this model. This statement seems paradoxal only at
the Grst glance: how come, the model is Grst simpliGed, and
is constructed only after the simpliGcation is done? How-
ever, in practice, the statement of the problem that is typical
for a mathematician (“let the system of di9erential equa-
tions be given, then: : :”) is only rarely applicable in
chemical engineering science for detailed kinetics. Some
reactions are known precisely, some other only hypothet-
ically. Some intermediate species are well studied, some
others not, not much is known about them. The situation is
even worse with reaction rates. On the contrary, the ther-
modynamic data (energies, enthalpies, entropies, chemical
potentials, etc.) for suRciently rareGed systems are quite
reliable. The Gnal identiGcation of the model is always done
on the basis of comparison with experiments and with the
help of Gtting. For this purpose, it is extremely important to
reduce the dimension of the system, and to reduce the num-
ber of tunable parameters. The normal logic of modeling for
the purpose of chemical engineering science is the follow-
ing: Exceedingly detailed but coarse with respect to param-
eters system → reduction → Gtting → reduced model with
speciGed parameters (cycles are allowed in this scheme,
with returns from Gtting to more detailed models, etc.). A
more radical viewpoint is also possible: “in chemical en-
gineering science, detailed kinetics is impossible, useless,
and does not exist.” For a recently published discussion on
this topic see Levenspiel (1999, 2000); Yablonsky (2000).

Alas, with a mathematical statement of the problem re-
lated to reduction, we all have to begin with the usual: let
the system of di9erential equations be given ... . Enormous
diRculties related to the question of how well the original
system is modeling the real kinetics remain out of focus of
these studies.

Our present work is devoted to studying reductions in a
given system of kinetic equations to invariant manifolds of
slow motions. We begin with a brief discussion of existing
approaches.

2.3. Partial equilibrium approximations

Quasi-equilibrium with respect to reactions is con-
structed as follows: from the list of reactions (1), one selects
those which are assumed to equilibrate Grst. Let these be
indexed with the numbers s1; : : : ; sk . The quasi-equilibrium
manifold is deGned by the system of equations,

W+
si =W−

si ; i = 1; : : : ; k: (15)

This system of equations looks particularly elegant when
written in terms of conjugated (dual) variables, � = ∇G:

〈�si ; �〉 = 0; i = 1; : : : ; k: (16)

In terms of conjugated variables, the quasi-equilibrium man-
ifold forms a linear subspace. This subspace, L⊥, is the
orthogonal complement to the linear envelope of vectors,
L= lin{�s1 ; : : : ; �sk}.
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Quasi-equilibrium with respect to species is constructed
practically in the same way but without selecting the sub-
set of reactions. For a given set of species, Ai1 ; : : : ; Aik , one
assumes that they evolve fast to equilibrium and remain
there. Formally, this means that in the k-dimensional sub-
space of the space of concentrations with the coordinates
ci1 ; : : : ; cik , one constructs the subspace Lwhich is deGned by
the balance equations, 〈bi ; c〉=0. In terms of the conjugated
variables, the quasi-equilibrium manifold, L⊥, is deGned by
equations,

�∈L⊥; (� = ($1; : : : ; $n)): (17)

The same quasi-equilibrium manifold can also be deGned
with the help of Gctitious reactions: let g1; : : : ; gq be a basis
in L. Then Eq. (17) may be rewritten as follows:

〈gi ; �〉 = 0; i = 1; : : : ; q: (18)

Illustration: Quasi-equilibrium with respect to reactions
in hydrogen oxidation: let us assume equilibrium with re-
spect to dissociation reactions, H2 � 2H, and O2 � 2O, in
some subdomain of reaction conditions. This gives:

k+
1 cH2 = k−1 c

2
H; k+

2 cO2 = k−2 c
2
O:

Quasi-equilibrium with respect to species: for the same re-
action, let us assume equilibrium over H, O, OH, and H2O2,
in a subdomain of reaction conditions. The subspace L is
deGned by balance constraints:

cH + cOH + 2cH2O2 = 0; cO + cOH + 2cH2O2 = 0:

The subspace L is two-dimensional. Its basis, {g1; g2} in the
coordinates cH, cO, cOH, and cH2O2 reads:

g1 = (1; 1;−1; 0); g2 = (2; 2; 0;−1):

The corresponding Eq. (18) is

$H + $O = $OH; 2$H + 2$O = $H2O2 :

General construction of the quasi-equilibrium manifold:
In the space of concentration, one deGnes a subspace Lwhich
satisGes the balance constraints:

〈bi ; L〉 ≡ 0:

The orthogonal complement of L in the space with coordi-
nates � = ∇G deGnes then the quasi-equilibrium manifold
�L. For the actual computations, one requires the inversion
from � to c. The duality structure �↔ c is well studied by
many authors (Orlov & Rozonoer, 1984; Dukek, Karlin, &
Nonnenmacher, 1997).
Quasi-equilibrium projector. It is not suRcient to just

derive the manifold, it is also required to deGne a projec-
tor which will transform the vector Geld deGned on the
space of concentrations to a vector Geld on the manifold.
The quasi-equilibrium manifold consists of points which
minimize G on the aRne spaces of the form c + L. These
aRne planes are hypothetic planes of fast motions (G is de-
creasing in the course of the fast motions). Therefore, the

quasi-equilibrium projector maps the whole space of con-
centrations on �L parallel to L. The vector Geld is also pro-
jected onto the tangent space of �L parallel to L.

Thus, the quasi-equilibrium approximation implies the
decomposition of motions into the fast (parallel to L) and
the slow (along the quasi-equilibrium manifold). In order
to construct the quasi-equilibrium approximation, knowl-
edge of reaction rate constants of “fast” reactions is not re-
quired (stoichiometric vectors of all these fast reaction are
in L, �fast ∈L, thus, knowledge of L suRces), one only needs
some conGdence in that they all are suRciently fast (Volpert
& Hudjaev, 1985). The quasi-equilibrium manifold itself is
constructed based on the knowledge of L and of G. Dy-
namics on the quasi-equilibrium manifold is deGned as the
quasi-equilibrium projection of the “slow component” of the
kinetic equations (4).

2.4. Model equations

The assumption behind the quasi-equilibrium is the hy-
pothesis of the decomposition of motions into fast and slow.
The quasi-equilibrium approximation itself describes slow
motions. However, sometimes it becomes necessary to re-
turn to the whole system, and to take into account the fast
motions as well. With this, it is desirable to keep intact
one of the important advantages of the quasi-equilibrium
approximation—its independence of the rate constants of
fast reactions. For this purpose, the detailed fast kinetics is
replaced by a model equation (single relaxation time ap-
proximation).
Quasi-equilibrium models (QEM) are constructed as fol-

lows: for each concentration vector c, consider the aRne
manifold, c + L. Its intersection with the quasi-equilibrium
manifold �L consists of one point. This point delivers
the minimum to G on c + L. Let us denote this point
as c∗L(c). The equation of the quasi-equilibrium model
reads:

ċ = −1
&

[c − c∗L(c)] +
∑
slow

�sWs(c∗L(c)); (19)

where &¿ 0 is the relaxation time of the fast subsys-
tem. Rates of slow reactions are computed in the points
c∗L(c) (the second term in the right-hand side of Eq. (19),
whereas the rapid motion is taken into account by a simple
relaxational term (the Grst term in the right-hand side of
Eq. (19). The most famous model kinetic equation is the
BGK equation in the theory of the Boltzmann equation
(Bhatnagar, Gross, & Krook, 1954). The general theory
of the quasi-equilibrium models, including proofs of their
thermodynamic consistency, was constructed by Gorban
and Karlin (1992c, 1994a).
Single relaxation time gradient models (SRTGM) were

considered by Ansumali and Karlin (2000, 2002, 2002a) in
the context of the lattice Boltzmann method for hydrody-
namics. These models are aimed at improving the obvious
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drawback of quasi-equilibrium models (19): in order to con-
struct the QEM, one needs to compute the function,

c∗L(c) = arg min
x∈c+L; x¿0

G(x): (20)

This is a convex programming problem. It does not always
have a closed-form solution.

Let g1; : : : ; gk is the orthonormal basis of L. We denote as
D(c) the k × k matrix with the elements 〈gi ;Hcgj〉, where
Hc is the matrix of second derivatives of G (7). Let C (c)
be the inverse of D(c). The single relaxation time gradient
model has the form:

ċ = −1
&

∑
i; j

giC (c)ij〈gj;∇G〉 +
∑
slow

�sWs(c): (21)

The Grst term drives the system to the minimum of G on
c + L, it does not require solving problem (20), and its
spectrum in the quasi-equilibrium is the same as in the
quasi-equilibrium model (19). Note that the slow compo-
nent is evaluated in the “current” state c.

Models (19) and (21) lift the quasi-equilibrium approxi-
mation to a kinetic equation by approximating the fast dy-
namics with a single “reaction rate constant” − relaxation
time &.

2.5. Quasi-steady state approximation

The quasi-steady state approximation (QSS) is a tool used
in a huge amount of works. Let us split the list of species in
two groups: the basic and the intermediate (radicals, etc.).
Concentration vectors are denoted accordingly, c s (slow,
basic species), and c f (fast, intermediate species). The con-
centration vector c is the direct sum, c = c s ⊕ c f. The fast
subsystem is Eq. (4) for the component c f at Gxed values
of c s. If it happens that the fast subsystem deGned this way
relaxes to a stationary state, c f → c fqss(c s), then the as-
sumption that c f = c fqss(c) is precisely the QSS assumption.
The slow subsystem is the part of the system (4) for c s, in
the right-hand side of which the component c f is replaced
with c fqss(c). Thus, J = Js ⊕ Jf, where

ċf = Jf(c s ⊕ c f); c s = const; c f → c fqss(c
s); (22)

ċs = Js(c s ⊕ cfqss(c s)): (23)

Bifurcations in system (22) under variation of c s as a param-
eter are confronted to kinetic critical phenomena. Studies of
more complicated dynamic phenomena in the fast subsys-
tem (22) require various techniques of averaging, stability
analysis of the averaged quantities, etc.

Various versions of the QSS method are possible, and
are actually used widely, for example, the hierarchical QSS
method. There, one deGnes not a single fast subsystem but
a hierarchy of them, c f1 ; : : : ; c fk . Each subsystem c fi is
regarded as a slow system for all the foregoing subsys-
tems, and it is regarded as a fast subsystem for the fol-
lowing members of the hierarchy. Instead of one system of

equations (22), a hierarchy of systems of lower-dimensional
equations is considered, each of these subsystems being eas-
ier to study analytically.

The theory of singularly perturbed systems of ordinary
di9erential equations is used to provide a mathematical back-
ground and further development of the QSS approximation
(Bowen et al., 1963; Segel & Slemrod, 1989). In spite of a
broad literature on this subject, it remains, in general, un-
clear, what is the smallness parameter that separates the in-
termediate (fast) species from the basic (slow). The reac-
tion rate constant cannot be such a parameter (unlike in the
case of the quasi-equilibrium). Indeed, intermediate species
participate in the same reactions as the basic species (for
example, H2 � 2H, H + O2 � OH + O). It is therefore in-
correct to state that c f evolves faster than c s. In the sense
of reaction rate constants, c f is not faster.

For catalytic reactions, it is not diRcult to Ggure out what
is the smallness parameter that separates the intermediate
species from the basic, and which allows to upgrade the
QSS assumption to a singular perturbation theory rigorously
(Yablonskii et al., 1991). This smallness parameter is the
ratio of balances: intermediate species include the catalyst,
and their total amount is simply signiGcantly less than the
amount of all the ci’s. After renormalizing to variables of
the same order of magnitude, the small parameter appears
explicitly.

For the usual radicals, the origin of the smallness param-
eter is quite similar. There are much less radicals than the
basic species (otherwise, the QSS assumption is inapplica-
ble). In the case of radicals, however, the smallness param-
eter cannot be extracted directly from the balances Bi (2).
Instead, one can come up with a thermodynamic estimate:
the function G decreases in the course of reactions, where-
upon we obtain the limiting estimate of concentrations of
any species:

ci6 max
G(c)6G(c(0))

ci; (24)

where c(0) is the initial composition. If the concentration cR
of the radical R is small both initially and in the equilibrium,
then it should remain small also along the path to the equi-
librium. For example, in the case of the ideal G (9) under
relevant conditions, for any t ¿ 0, the following inequality
is valid:

cR[ln(cR(t)=ceq
R ) − 1]6G(c(0)): (25)

Inequality (25) provides the simplest (but rather coarse)
thermodynamic estimate of cR(t) in terms of G(c(0)) and
ceq
R uniformly for t ¿ 0. The complete theory of thermody-

namic estimates of dynamics has been developed by Gorban
(1984). One can also do computations without a priori esti-
mations, if one accepts the QSS assumption until the values
c f stay suRciently small.

Let us assume that an a priori estimate has been found,
ci(t)6 ci max, for each ci. These estimate may depend on
the initial conditions, thermodynamic data, etc. With these
estimates, we are able to renormalize the variables in the
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kinetic equations (4) in such a way that the renormalized
variables take their values from the unit segment [0; 1]: c̃i =
ci=ci max. Then system (4) can be written as follows:

dc̃i
dt

=
1

ci max
Ji(c): (26)

The system of dimensionless parameters, )i = ci max=
maxi ci max deGnes a hierarchy of relaxation times, and with
its help one can establish various realizations of the QSS
approximation. The simplest version is the standard QSS
assumption: parameters )i are separated in two groups, the
smaller ones, and those of the order 1. Accordingly, the
concentration vector is split into c s ⊕ c f. Various hierar-
chical QSS are possible: with this, the problem becomes
more tractable analytically.

Corrections to the QSS approximation can be addressed
in various ways (see, e.g., Vasil’eva, Butuzov, & Kalachev,
1995; Strygin & Sobolev, 1988). There exists a variety of
ways to introduce the smallness parameter into kinetic equa-
tions, and one can Gnd applications for each of the realiza-
tions. However, two particular realizations remain basic for
chemical kinetics: (i) fast reactions (under given thermody-
namic data); (ii) small concentrations. In the Grst case, one
is led to the quasi-equilibrium approximation, in the second
case, to the classical QSS assumption. Both of these ap-
proximations allow for hierarchical realizations, which in-
clude not just two but many relaxation time scales. Such a
multi-scale approach essentially simpliAes analytical studies
of the problem.

The method of invariant manifold which we present be-
low in Section 6 allows to use both the QE and the QSS
as initial approximations in the iterative process of seeking
slow invariant manifolds. It is also possible to use a di9erent
initial ansatz chosen by a physical intuition, like, for exam-
ple, the Tamm–Mott–Smith approximation in the theory of
strong shock waves (Gorban & Karlin, 1992).

2.6. Methods based on spectral decomposition of
Jacobian Aelds

The idea to use the spectral decomposition of Jacobian
Gelds in the problem of separating the motions into fast and
slow originates from methods of analysis of sti9 systems
(Gear, 1971), and from methods of sensitivity analysis
in control theory (Rabitz et al., 1983). There are two ba-
sic statements of the problem for these methods: (i) the
problem of the slow manifold, and (ii) the problem of a
complete decomposition (complete integrability) of kinetic
equations. The Grst of these problems consists in construct-
ing the slow manifold �, and a decomposition of motions
into the fast one (towards �), and the slow one (along �)
(Maas & Pope, 1992). The second of these problems con-
sists in a transformation of the kinetic equations (4) to a
diagonal form, *̇i = fi(*i) (the so-called full nonlinear
lumping or modes decoupling, Lam & Goussis, 1994; Li,
Rabitz, & TZoth, 1994; TZoth, Li, Rabitz, & Tomlin, 1997).

Clearly, if one Gnds a suRciently explicit solution to the
second problem, then system (4) is completely integrable,
and nothing more is needed, the result has to be simply
used. The question is only to what extent such a solution
can be possible, and how diRcult it would be, as compared
to the Grst problem, to Gnd it.

One of the currently most popular methods is the con-
struction of the so-called intrinsic low-dimensional mani-
fold (ILDM, Maas & Pope, 1992). This method is based on
the following geometric picture: for each point c, one de-
Gnes the Jacobian matrix of Eq. (4), Fc ≡ @J(c)=@c. One
assumes that, in the domain of interest, the eigenvalues of
Fc are separated into two groups, +si and +fj , and that the
following inequalities are valid:

Re +si ¿ a¿b¿Re +fj ; a� b; b¡ 0:

Let us denote as Lsc and Lfc the invariant subspaces corre-
sponding to +s and +f, respectively, and letZ s

c andZf
c be the

corresponding spectral projectors, Z s
cL

s
c = Lsc, Z

f
c L

f
c = Lfc ,

Z s
cL

f
c =Zf

c Lsc={0}, Z s
c +Zf

c =1. The operator Z s
c projects

onto the subspace of “slow modes” Lsc, and it annihilates
the “fast modes” Lfc . The operator Zf

c does the opposite, it
projects onto fast modes, and it annihilates the slow modes.
The basic equation of the ILDM reads:

Zf
c J(c) = 0: (27)

In this equation, the unknown is the concentration vector c.
The set of solutions to Eq. (27) is the ILDM manifold �ildm.

For linear systems, Fc, Z s
c , and Zf

c , do not depend on
c, and �ildm = c eq + Ls. On the other hand, obviously,
c eq ∈�ildm. Therefore, procedures of solving of Eq. (27) can
be initiated by choosing the linear approximation, �(0)

ildm =
c eq + Lsc eq , in the neighborhood of the equilibrium c eq, and
then continued parametrically into the nonlinear domain.
Computational technologies of the continuation of solutions
with respect to parameters are well developed (see, for
example, Khibnik, Kuznetsov, Levitin, & Nikolaev, 1993;
Roose De Dier & Spence, 1990). The problem of the rele-
vant parameterization is solved locally: In the neighborhood
of a given point c 0 one can choose Z s

c (c− c 0) for a charac-
terization of the vector c. In this case, the space of param-
eters is Lsc. There exist other, physically motivated ways to
parameterize manifolds (Gorban & Karlin, 1992; see also
Section 4.1).

There are two drawbacks of the ILDM method which call
for its reGnement: (i) “Intrinsic” does not imply “invariant”.
Eq. (27) is not an invariant of the dynamics (4). If one
di9erentiates Eq. (27) in time due to Eq. (4), one obtains a
new equation which is the implication of Eq. (27) only for
linear systems. In a general case, the motion c(t) takes o9
the �ildm. The invariance of a manifold � means that J(c)
touches � in every point c ∈�. It remains unclear how the
ILDM (27) corresponds to this condition. Thus, from the
dynamical perspective, the status of the ILDM remains not
well deGned, or “ILDM is ILDM”, deGned self-consistently
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by Eq. (27), and that is all what can be said about it. (ii)
From the geometrical standpoint, spectral decomposition of
Jacobian Gelds is not the most attractive way to compute
manifolds. If we are interested in the behavior of trajectories,
how they converge or diverge, then one should consider the
symmetrized part of Fc, rather than Fc itself.

The symmetric part, F sym
c = (1=2)(F†

c + Fc), deGnes the
dynamics of the distance between two solutions, c and c′,
in a given local Euclidean metric. The skew-symmetric part
deGnes rotations. If we want to study manifolds based on
the argument about convergence/divergence of trajectories,
then we should use in Eq. (27) the spectral projector Z fsym

c

for the operator F sym
c . This, by the way, is also a signiG-

cant simpliGcation from the standpoint of computations. It
remains to choose the metric. This choice is unambiguous
from the thermodynamic perspective. In fact, there is only
one choice which Gts into the physical meaning of the prob-
lem, this is the metric associated with the thermodynamic
(or entropic) scalar product,

〈〈x; y〉〉 = 〈x;Hcy〉; (28)

where Hc is the matrix of second-order derivatives of G
(7). In the equilibrium, the operator F eq

c is selfadjoint with
respect to this scalar product (Onsager’s reciprocity rela-
tions). Therefore, the behavior of the ILDM in the vicin-
ity of the equilibrium does not alter under the replacement,
Fc eq =F sym

c eq . In terms of the usual matrix representation, we
have:

F sym
c =

1
2

(Fc +H−1
c FT

c Hc); (29)

where FT
c is the ordinary transposition.

The ILDM constructed with the help of the symmetrized
Jacobian Geld will be termed the symmetric entropic intrin-
sic low-dimensional manifold (SEILDM). The selfadjoint-
ness of F sym

c (29) with respect to the thermodynamic scalar
product (28) simpliGes considerably computations of spec-
tral decomposition. Moreover, it becomes necessary to do
spectral decomposition in only one point—in the equilib-
rium. Perturbation theory for selfadjoint operators is a very
well developed subject (Kato, 1976), which makes it possi-
ble to easily extend the spectral decomposition with respect
to parameters. A more detailed discussion of the selfadjoint
linearization will be given in section 5.2.

Thus, when the geometric picture behind the decompo-
sition of motions is speciGed, the physical signiGcance of
the ILDM becomes more transparent, and it leads to its
modiGcation into the SEILDM. This also gains simplicity
in the implementation by switching from non-selfadjoint
spectral problems to selfadjoint. The quantitative estimate
of this simpliGcation is readily available: let d be the di-
mension of the phase space, and k the dimension of the
ILDM (k = dimLsc). The space of all the projectors Z with
k-dimensional image has the dimension D= 2k(d− k). The
space of all the selfadjoint projectors with the k-dimensional
image has the dimension Dsym = k(d− k). For d = 20 and

k=3, we have D=102 and Dsym =51. When the spectral de-
composition by means of parametric extension is addressed,
one considers equations of the form:
dZ s

c(&)

d&
= �s

(
dc
d&
;Z s

c(&);Fc(&);∇Fc(&)
)
; (30)

where & is the parameter, and ∇Fc =∇∇J(c) is the di9er-
ential of the Jacobian Geld. For the selfadjoint case, where
we use =F sym

c instead of Fc, this system of equations has
twice fewer independent variables, and also the right hand
is of a simpler structure.

It is more diRcult to improve on the Grst of the remarks
(ILDM is not invariant). The following naive approach may
seem possible:

(i) Take �ildm = c eq + Lsc eq in a neighborhood U of the
equilibrium c eq. [This is also a useful initial approximation
for solving Eq. (27).]

(ii) Instead of computing the solution to Eq. (27), inte-
grate the kinetic equations (4) backwards in time. It is suf-
Gcient to take initial conditions c(0) from a dense set on the
boundary, @U ∩ (c eq + Lsc eq ), and to compute the solutions
c(t), t ¡ 0.

(iii) Consider the obtained set of trajectories as an ap-
proximation of the slow invariant manifold.

This approach will guarantee invariance, by construction,
but it is prone to pitfalls in what concerns the slowness.
Indeed, the integration backwards in time will see expo-
nentially divergent trajectories, if they were exponentially
converging in the normal time progress. This way one Gnds
some invariant manifold which touches c eq + Lsc eq in the
equilibrium. Unfortunately, there are inGnitely many such
manifolds, and they Gll out almost all the space of concen-
trations. However, we must select the slow component of
motions. Such a regularization is possible. Indeed, let us re-
place in Eq. (4) the vector Geld J(c) by the vector Geld
Z ssym
c J(c), and obtain a regularized kinetic equation,

ċ = Z ssym
c J(c): (31)

Let us replace integration backwards in time of the kinetic
equation (4) in the naive approach described above by inte-
gration backwards in time of the regularized kinetic equa-
tion (31). With this, we obtain a rather convincing version
of the ILDM (SEILDM). Using Eq. (30), one also can write
down an equation for the projector Z ssym

c , putting &= t. Re-
placement of Eq. (4) by Eq. (31) also makes the integration
backwards in time in the naive approach more stable. How-
ever, regularization will again conCict with invariance. The
“naive reGnement” after the regularization (31) produces
just a slightly di9erent version of the ILDM (or SEILDM)
but it does not construct the slow invariant manifold. So,
where is the way out? We believe that the ILDM and its ver-
sion SEILDM are, in general, good initial approximations
of the slow manifold. However, if one is indeed interested
in Gnding the invariant manifold, one has to write out the
true condition of invariance and solve it. As for the initial



A. N. Gorban, I. V. Karlin / Chemical Engineering Science 58 (2003) 4751–4768 4759

approximation for the method of invariant manifold one can
use any ansatz, in particular, the SEILDM.
The problem of a complete decomposition of the ki-

netic equations can be solved indeed in some cases. The
Grst such solution was the spectral decomposition for lin-
ear systems (Wei & Prater, 1962). Decomposition is some-
times possible also for nonlinear systems (Li et al., 1994;
TZoth et al., 1997). The most famous example of a complete
decomposition of inGnite-dimensional kinetic equations is
the complete integrability of the space-independent Boltz-
mann equation for Maxwell’s molecules found by Bobylev
(1988). However, in the general case, there exist no ana-
lytical, not even a twice di9erentiable transformation which
will decouple modes. The well known Grobman–Hartman
theorem (Hartman, 1963, 1982) states only the existence
of a continuous transform, which decomposes modes in a
neighborhood of the equilibrium. For example, the analytic
planar system, dx=dt = −x, dy=dt = −2y + x2, is not C2

linearizable. These problems remain of interest (Chicone &
Swanson, 2000). Therefore, in particular, it becomes quite
ine9ective to construct such a transformation in the form
of a series. It is more e9ective to solve a simpler problem
of extraction of a slow invariant manifold (Beyn & Kless,
1998).
Sensitivity analysis (Rabitz et al., 1983; Rabitz, 1987;

Lam & Goussis, 1994) makes it possible to select essential
variables and reactions, and to decompose motions into fast
and slow. In a sense, the ILDM method is a development of
sensitivity analysis. In particular, the computational singu-
lar perturbation (CSP) method of Lam and Goussis (1994)
includes ILDM (or any other reasonable initial choice of the
manifold) into a procedure of consequent reGnements. Re-
cently, a further step in this direction was done by Zhu and
Petzold (1999). In this work, the authors use a nonlocal in
time criterion of closeness of solutions of the full and of
the reduced systems of chemical kinetics. They require not
just a closeness of derivatives but a true closeness of the
dynamics.

Let us be interested in the dynamics of the concentra-
tions of just a few species, A1; : : : ;Ap, whereas the rest of
the species, Ap+1; : : : ;An are used for building the kinetic
equation, and for understanding the process. Let cgoal be the
concentration vector with components c1; : : : ; cp, cgoal(t) be
the corresponding components of the solution to Eq. (4),
and cred

goal be the solution to the simpliGed model with cor-
responding initial conditions. Zhu and Petzold (1999) sug-
gest to minimize the di9erence between cgoal(t) and cred

goal

on the segment t ∈ [0; T ]: ‖cgoal(t) − cred
goal‖ → min. In the

course of the optimization under certain restrictions one se-
lects the optimal (or appropriate) reduced model. The se-
quential quadratic programming method and heuristic rules
of sorting the reactions, substances, etc., were used. In the
result, for some sti9 systems studied, one avoids typical
pitfalls of the local sensitivity analysis. In simpler situa-
tions this method should give similar results as the local
methods.

2.7. Thermodynamic criteria for selection of important
reactions

One of the problems addressed by sensitivity analysis is
selecting the important and discarding the unimportant re-
actions. Bykov, Yablonskii, and Akramov (1977) suggested
a simple principle to compare the importance of di9erent
reactions according to their contribution to the entropy pro-
duction (or, which is the same, according to their con-
tribution to Ġ). Based on this principle, Dimitrov (1982)
described domains of parameters in which the reaction of
hydrogen oxidation, H2 + O2 + M, proceeds due to di9erent
mechanisms. For each elementary reaction, he has derived
the domain inside which the contribution of this reaction is
essential (nonnegligible). Due to its simplicity, this entropy
production principle is especially well suited for analysis of
complex problems. In particular, recently, a version of the
entropy production principle was used in the problem of se-
lection of boundary conditions for Grad’s moment equations
(Struchtrup & Weiss, 1998; Grmela, Karlin, & Zmievski,
2002). For ideal systems (9), the contribution of the sth re-
action to Ġ has a particularly simple form:

Ġs = −Ws ln
(
W+
s

W−
s

)
; Ġ =

r∑
s=1

Ġs: (32)

For nonideal systems, the corresponding expressions (13)
are also not too complicated.

3. Outline of the method of invariant manifold

In many cases, dynamics of the d-dimensional system (4)
leads to a manifold of a lower dimension. Intuitively, a typ-
ical phase trajectory behaves as follows: given the initial
state c(0) at t = 0, and after some period of time, the tra-
jectory comes close to some low-dimensional manifold �,
and after that proceeds towards the equilibrium essentially
along this manifold. The goal is to construct this manifold.

The starting point of our approach is based on a formu-
lation of the two main requirements:

(i) Dynamic invariance: The manifold � should be (posi-
tively) invariant under the dynamics of the originating
system (4): if c(0)∈�, then c(t)∈� for each t ¿ 0.

(ii) Thermodynamic consistency of the reduced dynamics:
Let some (not obligatorily invariant) manifold � is con-
sidered as a manifold of reduced description. We should
deGne a set of linear operators, Pc, labeled by the states
c ∈�, which project the vectors J(c), c ∈� onto the
tangent bundle of the manifold �, thereby generating
the induced vector Geld, PcJ(c), c ∈�. This induced
vector Geld on the tangent bundle of the manifold � is
identiGed with the reduced dynamics along the man-
ifold �. The thermodynamicity requirement for this
induced vector Geld reads

〈∇G(c);PcJ(c)〉6 0 for each c ∈�: (33)
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In order to meet these requirements, the method of invari-
ant manifold suggests two complementary procedures:

(i) To treat the condition of dynamic invariance as an equa-
tion, and to solve it iteratively by a Newton method.
This procedure is geometric in its nature, and it does
not use the time dependence and small parameters.

(ii) Given an approximate manifold of reduced description,
to construct the projector satisfying condition (33) in a
way which does not depend on the vector Geld J .

We shall now outline both these procedures starting with
the second. The solution consists, in the Grst place, in formu-
lating the thermodynamic condition which should be met by
the projectors Pc: for each c ∈�, let us consider the linear
functional

M∗
c (x) = 〈∇G(c); x〉: (34)

Then the thermodynamic condition for the projectors reads:

ker Pc ⊆ kerM∗
c for each c ∈�: (35)

Here kerPc is the null space of the projector, and kerM∗
c

is the hyperplane orthogonal to the vector M∗
c . It has been

shown (Gorban & Karlin, 1992, 1994) that condition (35) is
the necessary and suRcient condition to establish the ther-
modynamic induced vector Geld on the given manifold �
for all possible dissipative vector Gelds J simultaneously.

Let us now turn to the requirement of invariance. By
deGnition, the manifold � is invariant with respect to the
vector Geld J if and only if the following equality is true:

[1 − P]J(c) = 0 for each c ∈�: (36)

In this expression P is an arbitrary projector on the tangent
bundle of the manifold �. It has been suggested to consider
condition (36) as an equation to be solved iteratively starting
with some appropriate initial manifold.

Iterations for the invariance equation (36) are considered
in Section 5. The next section presents the construction of the
thermodynamic projector using a speciGc parameterization
of manifolds.

4. Thermodynamic projector

4.1. Thermodynamic parameterization

In this section, � denotes a generic p-dimensional man-
ifold. First, it should be mentioned that any parameteriza-
tion of � generates a certain projector, and thereby a certain
reduced dynamics. Indeed, let us consider a set of m inde-
pendent functionals M (c) = {M1(c); : : : ; Mp(c)}, and let us
assume that they form a coordinate system on � in such a
way that �= c(M), where c(M) is a vector function of the
parameters M1; : : : ; Mp. Then the projector associated with
this parameterization reads:

Pc(M)x=
p∑
j=1

@c(M)
@Mj

〈∇Mj|c(M); x〉: (37)

This somewhat involved notation is intended to stress that
projector (37) is dictated by the choice of the parameteriza-
tion. Subsequently, the induced vector Geld of the reduced
dynamics is found by applying projectors (37) on the vectors
J(c(M)), thereby inducing the reduced dynamics in terms
of the parameters M as follows:

Ṁj = 〈∇Mj|c(M); J(c(M))〉: (39)

Depending on the choice of the parameterization, the dy-
namic equations (39) are (or are not) consistent with the
thermodynamic requirement (33). The thermodynamic
parameterization makes use of condition (35) in order to
establish the thermodynamic projector. Specializing to case
(37), let us consider the linear functionals,

DMi|c(M)(x) = 〈∇Mi|c(M); x〉: (40)

Then condition (35) takes the form:
p⋂
i=1

kerDMi|c(M) ⊆ kerM∗
c(M); (41)

that is, the intersection of the null spaces of functionals (40)
should belong to the null space of the di9erential of the
Lyapunov function G, in each point of the manifold �.

In practice, in order to construct the thermodynamic pa-
rameterization, we take the following set of functionals in
each point c of the manifold �:

M1(x) =M∗
c (x); c ∈�; (42)

Mi(x) = 〈mi ; x〉; i = 2; : : : ; p: (43)

It is required that vectors ∇G(c);m2; : : : ;mp are linearly
independent in each state c ∈�. Inclusion of functionals
(34) as a part of system (42) and (43) implies the thermo-
dynamic condition (41). Also, any linear combination of the
parameter set (42), (43) will meet the thermodynamicity
requirement.

It is important to notice here that the thermodynamic con-
dition is satisGed whatsoever the functionalsM2; : : : ; Mp are.
This is very convenient, for it gives an opportunity to take
into account the conserved quantities correctly. The mani-
folds we are going to deal with should be consistent with the
conservation laws (2). While the explicit characterization of
the phase space V is a problem on its own, in practice, it is
customary to work in the n–dimensional space while keep-
ing constraints (2) explicitly on each step of the construc-
tion. For this technical reason, it is convenient to consider
manifolds of dimension p¿l, where l is the number of
conservation laws, in the n–dimensional space rather than
in the phase space V . The thermodynamic parameterization
is then concordant also with the conservation laws if l of
the linear functionals (43) are identiGed with the conserva-
tion laws. In the sequel, only projectors consistent with the
conservation laws are considered.
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Very frequently, the manifold � is represented as
a p-parametric family c(a1; : : : ; ap), where the ai are
coordinates on the manifold. The thermodynamic re-
parameterization suggests a representation of the coordi-
nates ai in terms of M∗

c ; M2; : : : ; Mp (42), (43). While the
explicit construction of these functions may be a formidable
task, we notice that the construction of the thermodynamic
projector of the form (37) and of the dynamic equations
(39) is relatively easy because only the derivatives @c=@Mi

enter these expressions. This point was discussed in a detail
by Gorban and Karlin (1992, 1994).

4.2. Decomposition of motions: thermodynamics

Finally, let us discuss how the thermodynamic projec-
tor is related to the decomposition of motions. Assuming
that the decomposition of motions near the manifold � is
true indeed, let us consider states which were initially close
enough to the manifold �. Even without knowing the details
about the evolution of the states towards �, we know that
the Lyapunov function G was decreasing in the course of
this evolution. Let us consider a set of states Uc which con-
tains all those vectors c′ that have arrived (in other words,
have been projected) into the point c ∈�. Then we observe
that the state c furnishes the minimum of the function G on
the set Uc. If a state c′ ∈Uc, and if it deviates small enough
from the state c so that the linear approximation is valid,
then c′ belongs to the aRne hyperplane

4c = c + kerM∗
c ; c ∈�: (44)

This hyperplane actually participates in the condition (35).
The consideration was entitled ‘thermodynamic’ (Gorban
& Karlin, 1992) because it describes the states c ∈� as
points of minimum of the function G over the corresponding
hyperplanes (44).

5. Corrections

5.1. Preliminary discussion

The thermodynamic projector is needed to induce the
dynamics on a given manifold in such a way that the dissipa-
tion inequality (33) holds. Coming back to the issue of con-
structing corrections, we should stress that the projector par-
ticipating in the invariance condition (36) is arbitrary. It is
convenient to make use of this point: when Eq. (36) is solved
iteratively, the projector may be kept non-thermodynamic
unless the induced dynamics is explicitly needed.

Let us assume that we have chosen the initial manifold,
�0, together with the associated projector P0, as the Grst ap-
proximation to the desired manifold of reduced description.
Although the choice of the initial approximation �0 depends
on the speciGc problem, it is often reasonable to consider
quasi-equilibrium or quasi steady-state approximations. In
most cases, the manifold �0 is not an invariant manifold.

This means that �0 does not satisfy the invariance condition
(36):

%0 = [1 − P0]J(c0) �= 0 for some c0 ∈�0: (45)

Therefore, we seek a correction c1 = c0 + 5c. Substituting
P=P0 and c=c0 +5c into the invariance equation (36), and
after the linearization in 5c, we derive the following linear
equation:

[1 − P0][J(c0) + Lc05c] = 0; (46)

where Lc0 is the matrix of Grst derivatives of the vector
function J , computed in the state c0 ∈�0. The system of
linear algebraic equations (46) should be supplied with the
additional condition.

P05c = 0: (47)

In order to illustrate the nature of Eq. (46), let us con-
sider the case of linear manifolds for linear systems. Let a
linear evolution equation is given in the Gnite-dimensional
real space: ċ = Lc, where L is negatively deGnite symmet-
ric matrix with a simple spectrum. Let us further assume
the quadratic Lyapunov function, G(c) = 〈c; c〉. The mani-
folds we consider are lines, l(a) = ae, where e is the unit
vector, and a is a scalar. The invariance equation for such
manifolds reads: e〈e;Le〉 −Le= 0, and is simply a form of
the eigenvalue problem for the operator L. Solutions to the
latter equation are eigenvectors ei, corresponding to eigen-
values +i.

Assume that we have chosen a line, l0 = ae0, deGned by
the unit vector e0, and that e0 is not an eigenvector of L.
We seek another line, l1 = ae1, where e1 is another unit
vector, e1 = y1=‖y1‖, y1 = e0 + 5y. The additional condi-
tion (47) now reads: 〈5y; e0〉 = 0. Then the Eq. (46) be-
comes [1 − e0〈e0; ·〉]L[e0 + 5y] = 0. Subject to the addi-
tional condition, the unique solution is as follows: e0 +5y=
〈e0;L−1e0〉−1L−1e0. Rewriting the latter expression in the
eigen–basis of L, we have: e0 +5y˙

∑
i +

−1
i ei〈ei ; e0〉. The

leading term in this sum corresponds to the eigenvalue with
the minimal absolute value. The example indicates that the
method of linearization (46) seeks the direction of the slow-
est relaxation. For this reason, the method (46) can be rec-
ognized as the basis of an iterative method for constructing
the manifolds of slow motions.

For the nonlinear systems, the matrix Lc0 in Eq. (46)
depends nontrivially on c0. In this case system (46) requires
a further speciGcation which will be done now.

5.2. Symmetric linearization

The invariance condition (36) supports a lot of in-
variant manifolds, and not all of them are relevant to
the reduced description (for example, any individual tra-
jectory is itself an invariant manifold). This should be
carefully taken into account when deriving a relevant
equation for the correction in the states of the initial
manifold �0 which are located far from equilibrium.
This point concerns the procedure of the linearization
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of the vector Geld J , appearing in Eq. (46). We shall return to
the explicit form of the Marcelin–De Donder kinetic function
(11). Let c be an arbitrary Gxed element of the phase space.
The linearization of the vector function J (12) about c may
be written J(c+5c) ≈ J(c)+Lc5c where the linear operator
Lc acts as follows:

Lcx=
r∑

s=1

�s[W
+
s (c)〈�s;Hcx〉 −W−

s (c)〈�s;Hcx〉]: (48)

Here Hc is the matrix of second derivatives of the function
G in the state c [see Eq. (7)]. The matrix Lc in the Eq. (48)
can be decomposed as follows:

Lc = L′
c + L′′

c : (49)

The matrices L′
c and L′′

c act as follows:

L′
cx= −1

2

r∑
s=1

[W+
s (c) +W−

s (c)]�s〈�s;Hcx〉; (50)

L′′
c x=

1
2

r∑
s=1

[W+
s (c) −W−

s (c)]�s〈�s + �s;Hcx〉: (51)

Some features of this decomposition are best seen when we
use the thermodynamic scalar product (28); the following
properties of the matrix L′

c are veriGed immediately:

(i) The matrix L′
c is symmetric in the scalar product (28):

〈〈x;L′
cy〉〉 = 〈〈y;L′

cx〉〉: (52)

(ii) The matrix L′
c is nonpositive deGnite in the scalar

product (28):

〈〈x;L′
cx〉〉6 0: (53)

(iii) The null space of the matrix L′
c is the linear envelope

of the vectorsH−1
c bi representing the complete system

of conservation laws:

ker L′
c = Lin{H−1

c bi ; i = 1; : : : ; l} (54)

(iv) If c = c eq, then W+
s (c eq) =W−

s (c eq), and

L′
c eq = Lc eq : (55)

Thus, the decomposition Eq. (49) splits the matrix Lc into
two parts: one part, Eq. (50) is symmetric and nonpositive
deGnite, while the other part, Eq. (51), vanishes in the equi-
librium. The decomposition Eq. (49) explicitly takes into
account the Marcelin–De Donder form of the kinetic func-
tion. For other dissipative systems, decomposition (49) is
possible as soon as the relevant kinetic operator is written
in a gain–loss form (for instance, this is straightforward for
the Boltzmann collision operator).

In the sequel, we shall make use of the properties of the
operator L′

c (50) for constructing the dynamic correction by
extending the picture of the decomposition of motions.

5.3. Decomposition of motions: kinetics

The assumption about the existence of the decomposition
of motions near the manifold of reduced description � has
led to the thermodynamic speciGcations of the states c ∈�.
This was accomplished in Section 4.2, where the thermo-
dynamic projector was backed by an appropriate variational
formulation, and this helped us to establish the induced dy-
namics consistent with the dissipation property. Another im-
portant feature of the decomposition of motions is that the
states c ∈� can be speciGed kinetically. Indeed, let us do
it again as if the decomposition of motions were valid in
the neighborhood of the manifold �, and let us ‘freeze’ the
slow dynamics along the �, focusing on the fast process of
relaxation towards a state c ∈�. From the thermodynamic
perspective, fast motions take place on the aRne hyperplane
c + 5c ∈4c0 , where 4c0 is given by Eq. (44). From the ki-
netic perspective, fast motions on this hyperplane should be
treated as a relaxation equation, equipped with the quadratic
Lyapunov function 5G=〈〈5c; 5c〉〉. Furthermore, we require
that the linear operator of this evolution equation respects
Onsager’s symmetry requirements (selfadjointness with re-
spect to the entropic scalar product). This latter crucial
requirement describes fast motions under the frozen slow
evolution in the similar way, as all the motions near the
equilibrium.

Let us consider now the manifold �0 which is not the
invariant manifold of the reduced description but, by our
assumption, is located close to it. Consider a state c0 ∈�0,
and the states c0 + 5c close to it. Further, let us consider an
equation

5̇c = L′
c0
5c: (56)

Due to the properties of the operator L′
c0

(50), this equation
can be regarded as a model of the assumed true relaxation
equation near the true manifold of the reduced description.
For this reason, we shall use the symmetric operator L′

c
(50) instead of the linear operator Lc when constructing the
corrections.

5.4. Symmetric iteration

Let the manifold �0 and the corresponding projector P0

be the initial approximation to the invariant manifold of the
reduced description. The dynamic correction c1 = c0 + 5c is
found upon solving the following system of linear algebraic
equations:

[1 − P0][J(c0) + L′
c0
5c] = 0; P05c = 0: (57)

Here L′
c0

is matrix (50) taken in the states on the manifold
�0. An important technical point here is that the linear sys-
tem (57) always has a unique solution for any choice of
the manifold �. This point is crucial since it guarantees the
opportunity of carrying out the correction process for an
arbitrary number of steps.
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6. The method of invariant manifold

We shall now combine together the two procedures dis-
cussed above. The resulting method of invariant manifold
intends to seek iteratively the reduced description, starting
with an initial approximation.

(i) Initialization. In order to start the procedure, it is
required to choose the initial manifold �0, and to derive
corresponding thermodynamic projector P0. In the major-
ity of cases, initial manifolds are available in two di9erent
ways. The Grst case is that of the quasi-equilibrium mani-
folds described in Section 2.3. The macroscopic parameters
are Mi = ci = 〈mi ; c〉, where mi is the unit vector corre-
sponding to the species Ai. The quasi-equilibrium manifold,
c0(M1; : : : ; Mk ; B1; : : : ; Bl), compatible with the conservation
laws, is the solution to the variational problem:

G → min;
〈mi ; c〉 = ci; i = 1; : : : ; k;

〈bj; c〉 = Bj; j = 1; : : : ; l:
(58)

In the case of quasi-equilibrium approximation, the cor-
responding thermodynamic projector can be written most
straightforwardly in terms of the variables Mi:

P0x=
k∑
i=1

@c0

@ci
〈mi ; x〉 +

l∑
i=1

@c0

@Bi
〈bi ; x〉: (59)

For quasi-equilibrium manifolds, a reparameterization with
set (42), (43) is not necessary (Gorban & Karlin, 1992,
1994).

The second source of initial approximations are
quasi-stationary manifolds (Section 2.5). Unlike the
quasi-equilibrium case, the quasi-stationary manifolds must
be reparameterized in order to construct the thermodynamic
projector.

(ii) Corrections. Iterations are organized in accord with
the rule: if cm is the mth approximation to the invariant
manifold, then the correction cm+1 = cm + 5c is found from
the linear algebraic equations,

[1 − Pm](J(cm) + L′
cm5c) = 0; (60)

Pm5c = 0: (61)

Here L′
cm is the symmetric matrix (50) evaluated at the mth

approximation. The projector Pm is not obligatorily thermo-
dynamic at that step, and it is taken as follows:

Pmx=
k∑
i=1

@cm
@ci

〈mi ; x〉 +
l∑
i=1

@cm
@Bi

〈bi ; x〉: (62)

(iii)Dynamics.Dynamics on themth manifold is obtained
with the thermodynamic re-parameterization.

In the next section we shall illustrate how this all works.

7. Illustration: two-step catalytic reaction

Here we consider a two-step four-component reaction
with one catalyst A2:

A1 + A2 � A3 � A2 + A4: (63)

We assume that the Lyapunov function is of the form (9),
G =

∑4
i=1 ci[ln(ci=c

eq
i ) − 1]. The kinetic equation for the

four-component vector of concentrations, c= (c1; c2; c3; c4),
has the form

ċ = �1W1 + �2W2: (64)

Here �1;2 are stoichiometric vectors,

�1 = (−1;−1; 1; 0); �2 = (0; 1;−1; 1); (65)

while the functions W1;2 are reaction rates:

W1 = k+
1 c1c2 − k−1 c3; W2 = k+

2 c3 − k−2 c2c4: (66)

Here k±1;2 are reaction rate constants. The system under con-
sideration has two conservation laws,

c1 + c3 + c4 = B1; c2 + c3 = B2; (67)

or 〈b1;2; c〉=B1;2, where b1 =(1; 0; 1; 1) and b2 =(0; 1; 1; 0).
The nonlinear system (64) is e9ectively two-dimensional,
and we consider a one-dimensional reduced description.

We have chosen the concentration of the species A1 as
the variable of reduced description: M =c1, and c1 = 〈m; c〉,
where m=(1; 0; 0; 0). The initial manifold c0(M) was taken
as the quasi-equilibrium approximation, i.e., the vector func-
tion c0 is the solution to the problem:

G → min for 〈m; c〉 = c1; 〈b1; c〉 = B1; 〈b2; c〉 = B2: (68)

The solution to problem (68) reads:

c01 = c1;

c02 = B2 − 6(c1);

c03 = 6(c1);

c04 = B1 − c1 − 6(c1);

6(M) = A(c1) −
√
A2(c1) − B2(B1 − c1);

A(c1) =
B2(B1 − ceq

1 ) + ceq
3 (ceq

1 + ceq
3 − c1)

2ceq
3

: (69)

The thermodynamic projector associated with manifold (69)
reads:

P0x=
@c0

@c1
〈m; x〉 +

@c0

@B1
〈b1; x〉 +

@c0

@B2
〈b2; x〉: (70)

Computing %0 = [1 −P0]J(c0) we Gnd that inequality (45)
takes place, and thus the manifold c0 is not invariant. The
Grst correction, c1=c0+5c, is found from the linear algebraic
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system (60)

(1 − P0)L′
05c = −[1 − P0]J(c0); (71)

5c1 = 0;

5c1 + 5c3 + 5c4 = 0;

5c3 + 5c2 = 0; (72)

where the symmetric 4×4 matrixL′
0 has the form (we write 0

instead of c0 in the subscript in order to simplify notations):

L′0; kl = −�1k
W+

1 (c0) +W−
1 (c0)

2
�1l

c0l

− �2k
W+

2 (c0) +W−
2 (c0)

2
�2l

c0l
: (73)

The explicit solution c1(c1; B1; B2) to the linear system (71)
is easily found, and we do not reproduce it here. The process
was iterated. On the k + 1 iteration, the following projector
Pk was used:

Pkx=
@ck
@c1

〈m; x〉 +
@ck
@B1

〈b1; x〉 +
@ck
@B2

〈b2; x〉: (74)

Notice that the projector Pk (74) is the thermodynamic pro-
jector only if k = 0. As we have already mentioned above,
in the process of Gnding the corrections to the manifold,
non-thermodynamic projectors are allowed. The linear equa-
tion at the k + 1 iteration is thus obtained by replacing c0,
P0, and L′

0 with ck , Pk , and L′
k in all the entries of the Eqs.

(71) and (73).
Once the manifold ck was obtained on the kth iteration, we

derived the corresponding dynamics by introducing the ther-
modynamic parameterization (and the corresponding ther-
modynamic projector) with the help of the function (42).
The resulting dynamic equation for the variable c1 in the kth
approximation has the form:

〈∇G|ck ; @ck =@c1〉ċ1 = 〈∇G|ck ; J(ck)〉: (75)

Here [∇G|ck ]i = ln[cki=c
eq
i ].

Analytic results were compared with the results of the
numerical integration. The following set of parameters was
used:

k+
1 = 1:0; k−1 = 0:5; k+

2 = 0:4; k−2 = 1:0;

ceq
1 = 0:5; ceq

2 = 0:1; ceq
3 = 0:1; ceq

4 = 0:4;

B1 = 1:0; B2 = 0:2:

Direct numerical integration of the system has demonstrated
that the manifold c3 = ceq

3 in the plane (c1; c3) attracts all
individual trajectories. Thus, the reduced description in this
example should extract this manifold.

Fig. 1 demonstrates the quasi-equilibrium manifold (69)
and the Grst two corrections found analytically. It should be
stressed that we spend no special e9ort on the construction
of the initial approximation, that is, of the quasi-equilibrium

Fig. 1. Images of the initial quasi-equilibrium manifold (bold line) and
the Grst two corrections (solid normal lines) in the phase plane [c1; c3] for
two-step catalytic reaction (63). Dashed lines are individual trajectories.

manifold, have not used any information about the Jaco-
bian Geld (unlike, for example, the ILDM or CSP methods
discussed above), etc. It is therefore not surprising that the
initial quasi-equilibrium approximation chosen in this way
is in rather poor agreement with the reduced description.
However, it should be appreciated that the further correc-
tions rapidly improve the situation while no small parame-
ter considerations were used. This conGrms our expectation
of the advantage of using the iteration methods in compari-
son to methods based on a small parameter expansions for
model reduction problems.

8. Method of invariant manifold without a priori
parameterization

Formally, the method of invariant manifold does not re-
quire a global parameterization of the manifolds. However,
in most of the cases, one makes use of a priori deGned
“macroscopic” variables M . This is motivated by the choice
of quasi-equilibrium initial approximations.

Let a manifold � be deGned in the phase space of the
system, and let its tangent space in the point c be Tc�. How
to deGne the projector of the whole concentrations space
onto Tc� without using any a priori parameterization of �?

The basis of the answer to this question is the condition
of thermodynamicity (35). Let us denote E as the concen-
tration space, and consider the problem of the choice of the
projector in the quadratic approximation to the thermody-
namic potential G:

Gq = 〈g;Hc\c〉 +
1
2
〈\c;Hc\c〉

= 〈〈g;\c〉〉 +
1
2
〈〈\c;\c〉〉; (76)
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where Hc is the matrix of the second-order derivatives of G
(7), g =H−1

c ∇G, \c is the deviation of the concentration
vector from the expansion point.

Let a linear subspace T be given in the concentrations
space E. Problem: For every \c + T , and for every g ∈E,
deGne a subspace L\c such that: (i) L\c is a complement of
T in E:

L\c + T = E; L\c ∩ T = {0}:
(ii) \c is the point of minimum of Gq on L\c + \c:

\c = arg min
x−\c∈L\c

Gq(x): (77)

Besides (i) and (ii), we also impose the requirement of
a maximal smoothness (analyticity) on L\c as a function
of g and \c. Requirement (77) implies that \c is the
quasi-equilibrium point for the given L\c, while the prob-
lem in a whole is the inverse quasi-equilibrium problem:
we construct L\c such that T will be the quasi-equilibrium
manifold. Then subspaces L\c will actually be the kernels
of the quasi-equilibrium projector.

Let f1; : : : ; fk be the orthonormalized basis of T with re-
spect to 〈〈·; ·〉〉 scalar product, and let the vector h be orthog-
onal to T , 〈〈h; h〉〉= 1, g=�f1 +�h. Condition (77) implies
that the vector ∇G is orthogonal to L\c in the point \c.

Let us Grst consider the case � = 0. The requirement
of analyticity of L\c as the function of � and \c implies
L\c=L0+o(1), where L0=T⊥ is the orthogonal complement
of T with respect to the scalar product 〈〈·; ·〉〉. The constant
solution, L\c ≡ L0 also satisGes (77). Let us Gx � �= 0, and
extend this latter solution to � �= 0. With this, we obtain a
basis, l1; : : : ; ln−k . Here is the simplest construction of this
basis:

l1 =
�f1 − (� + \c1)h

(�2 + (� + \c1)2)1=2 ; (78)

where \c1 = 〈〈\c; f1〉〉 is the Grst component in the ex-
pansion, \c =

∑
i \cifi. The rest of the basis elements,

l2; : : : ; ln−k form the orthogonal complement of T ⊕ (h) with
respect to scalar product 〈〈·; ·〉〉, (h) is the line spanned by h.

The dependence L\c (78) on \c, � and � is singular: at
�+ \c1, vector l1 ∈T , and then L\c is not the complement
of T in E anymore. For � �= 0, the dependence L\c gives one
of the solutions to the inverse quasi-equilibrium problem in
the neighborhood of zero in T . We are interested only in the
limit,

lim
\c→0

L\c = Lin

{
�f1 − �h√
�2 + �2

; l2; : : : ; ln−k

}
: (79)

Finally, let us deGne now the projector Pc of the space
E onto Tc�. If H−1

c ∇G ∈Tc�, then Pc is the orthogonal
projector with respect to the scalar product 〈〈·; ·〉〉:

Pcz =
k∑
i=1

fi〈〈fi ; z〉〉: (80)

If H−1
c ∇G �∈ Tc�, then, according to Eq. (79),

Pcz =
〈〈f1; z〉〉 − 〈〈l1; z〉〉〈〈f1; l1〉〉

1 − 〈〈f1; l1〉〉2 f1 +
k∑
i=2

fi〈〈fi ; z〉〉; (81)

where {f1; : : : ; fk} is the orthonormal basis of Tc� with re-
spect to 〈〈·; ·〉〉, h is orthogonal to T , 〈〈h; h〉〉=1,H−1

c ∇G=
�f1 +�h, l1 =(�f1−�h)=

√
�2 + �2, 〈〈f1; l1〉〉=�=

√
�2 + �2.

Thus, for solving the invariance equation iteratively, one
needs only the projector Pc (81), and one does not need an
a priori parameterization of � anymore.

9. Method of invariant grids

Grid-based approximations of manifolds are attractive
from the computational perspective. Since no a priori param-
eterization is required in the method of invariant manifold,
in this section we develop its grid-based realization. Let us
consider a regular grid Q in Rk , and its mapping F into the
concentrations space E. It makes sense to consider only F
which map a Gnite part of the grid into the phase space V .
This part of the map is termed essential. Extension of the
map F onto the rest of the nodes is done by a simple (for
example, linear) extrapolation of the essential part (in prac-
tice, one needs to extrapolate only onto the next neighbors
of the essential nodes).

Let operators of grid di9erentiationDi be deGned for func-
tions on the grid, where i=1; : : : ; k label the grid coordinates
xi. With this, the tangent space to the image of the grid in
the point c(x) =F(x) is deGned for each node of the grid x:

Tx = Lin{’1; : : : ; ’k};

’i = Dic(x) = (Dic1(x); : : : ; Dicn(x)): (82)

The grid is termed invariant if, for each essential node,

J(c(x))∈Tx:
For the essential nodes, we write down the invariance equa-
tion with the projector, Pc(x) : E → Tx: this equation is
solved using the Newton method as was described above in
Section 6. A good initial approximation is a linear map of
the grid on the aRne manifold corresponding to slow relax-
ation in the vicinity of the equilibrium. It is convenient to
take this map isometric with respect to the metric generated
by the entropic scalar product in the equilibrium.

If the vector Geld of the reduced model, ċ=Pc(x)J(c(x)),
is deGned on the nodes F(x), then one can deGne the dy-
namics ẋi on the nodes. In order to do this, we expand ċ
over ’i: ċ=

∑k
i=1 ai’i. The dynamics on the nodes is then

deGned by equations, ẋi = ai. Using interpolation, we can
deGne the vector Geld ẋ within the essential cells of the grid
(those cells for which all the nodes are essential). The sys-
tem of equations thus obtained models the dynamics on the
invariant manifold.
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The essence of this construction is that, by solving a set of
uncomplicated linear equations arising from the linearization
of the invariance equations on the nodes one gets a reliable
numerical scheme for constructing invariant manifolds. The
use of grid di9erentiation rather than a di9erentiable approx-
imation to the manifold makes the scheme suited for parallel
realizations. We stress once again that such realizations are
only possible if no a priori global parameterization of man-
ifolds is required. Further reGnements of the scheme, taking
into account the process of moving the inessential nodes
into the phase space, and the opposite process of essential
nodes leaving the phase space can be done in the same way
as for grid-based data analysis (Gorban & Rossiev, 1999;
Gorban, Pitenko, Zinovyev, & Wunsch, 2001b; Gorban &
Zinovyev, 2001).

10. Method of invariant manifold for open systems

One of the problems to be focused on when studying
closed systems is to prepare extensions of the result for
systems that are open or driven by Pows. External Pows are
usually taken into account by additional terms in the kinetic
equations (4):

ċ = J(c) + 1: (83)

Zero-order approximation assumes that the Pow does not
change the invariant manifold. The equations of the reduced
dynamics, however, do change: instead of J(c(M)) we sub-
stitute J(c(M)) + 1 into Eq. (39):

Ṁ i =
p∑
j=1

N−1
ij 〈∇Mj|c(M); J(c(M)) + 1〉: (84)

Zero-order approximation assumes that the fast dynamics in
the closed system strongly couples the variables c, so that
Pows cannot inPuence this coupling.
First-order approximation takes into account the shift of

the invariant manifold by 5c. The equations for Newton’s
iterations have the same form (57), but instead of the vector
Geld J they take into account the presence of the Pow:

[1 − Pc](1 + L′
c5c) = 0; Pc5c = 0; (85)

where projector Pc corresponds to the unperturbed manifold.
The Grst-order approximation means that Puxes change

the coupling between the variables (concentrations). It is
assumed that this new coupling is also set instantaneously
(neglect of inertia).
Remark. Various realizations of the Grst-order approxi-

mation in physical and chemical dynamics implement the
viewpoint of an inGnitely small chemical reactor driven by
the Pow. In other words, this approximation is applicable in
the Lagrangian system of coordinates (Karlin et al., 1998;
Zmievskii et al., 2000). Transition to Eulerian coordinates
is possible but the relations between concentrations and the
Pow will change their form. In contrast to this, the simpler

zero-order approximation is equally applicable in both
coordinate systems, if it is valid.

11. Conclusion

In this paper, we have presented the method for con-
structing invariant manifolds for reducing systems of chem-
ical kinetics. Our approach to the computation of invariant
manifolds of dissipative systems is close in spirit to the
Kolmogorov–Arnold–Moser theory of invariant tori of
Hamiltonian systems (Arnold, 1963, 1983): we also base
our consideration on the Newton method instead of
Taylor series expansions (Beyn & Kless, 1998), and sys-
tematically use duality structures. Recently, a version of an
approach based on the invariance equations was used by
Kazantzis (2000). He was solving the invariance equation
by a Taylor series expansion. A counterpart of Taylor series
expansions for constructing the slow invariant manifolds in
the classical kinetic theory is the famous Chapman–Enskog
method. The question of how this compares to iteration
methods was studied extensively for certain classes of
Grad moment equations (Gorban & Karlin, 1996a; Karlin,
Dukek, & Nonnenmacher, 1997a; Karlin, 2000).

Thermodynamic parameterization and the selfadjoint lin-
earization arise in a natural way in the problem of Gnding
the slowest invariant manifolds for closed systems. This also
leads to various applications in di9erent approaches to re-
ducing the description, in particular, to a thermodynamically
consistent version of the intrinsic low-dimensional mani-
fold, and to model kinetic equations for lifting the reduced
dynamics. Use of the thermodynamic projector makes it un-
necessary to assume a global parameterization of manifolds,
and thus leads to computationally promising grid-based re-
alizations.

Invariant manifolds are constructed for closed space-
independent chemical systems. We also describe how to use
these manifolds for modeling open and distributed systems.
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